Using tasks in language teaching

Loading
loading...

English for Technical Professionals

March 8, 2024
mike@standardsmichigan.com
No Comments

IEEE English for Technical Professionals is a 14-hour online learning program designed to provide non-native English speakers with a working knowledge of English techniques and vocabulary that are essential for working in today’s technical workplace.

 

IEEE English for Technical Professionals

Electropedia: The World’s Online Electrotechnical Vocabulary

Standards January: Language

The “Sugaring” Season

March 8, 2024
mike@standardsmichigan.com
, , , , ,
No Comments

Vermont is the largest producer of maple syrup in the United States, and the maple syrup industry is an important part of the state’s economy and culture. Vermont maple syrup is renowned for its high quality and distinctive flavor, and many people around the world seek out Vermont maple syrup specifically.

The maple syrup industry in Vermont is primarily made up of small-scale family farms, where maple sap is collected from sugar maple trees in early spring using a process called “sugaring.” The sap is then boiled down to produce pure maple syrup, which is graded according to its color and flavor. Vermont maple syrup is graded on a scale from Grade A (lighter in color and milder in flavor) to Grade B (darker in color and more robust in flavor).

The Vermont maple syrup industry is heavily regulated to ensure quality and safety, and the state has strict standards for labeling and grading maple syrup. In addition to pure maple syrup, many Vermont maple producers also make maple candy, maple cream, and other maple products.

University of Vermont Facilities Management

Vermont

“When the Saints Go Marching In”

March 7, 2024
mike@standardsmichigan.com
,
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Laboratories 100

March 7, 2024
mike@standardsmichigan.com
,
No Comments

Starting 2023 we will break down our coverage of laboratory standards thus:

Laboratories 100 will cover a broad overview of the safety and sustainability standards setting catalogs; emphasis on titles incorporated by reference into public safety laws.

Laboratories 200 will cover laboratory occupancies primarily for teaching and healthcare clinical delivery.

Laboratories 400 will cover laboratories for scientific research.

Laboratories 500 is broken out as a separate but related topic and will cover conformity and case studies that resulted in litigation.  Both Laboratories 200 and 400 will refer to the cases but not given a separate colloquium unless needed.

At the usual time.  Use the login credentials at the upper right of our home page.


February 27, 2023

Research findings related to laboratory safety:

  1. Identifying and Evaluation Hazards in Research Laboratories
  2. “Evaluating the Efficacy of Laboratory Hazard Assessment Tools for Risk Management in Academic Research Laboratories” – This study from 2021 evaluated the effectiveness of various laboratory hazard assessment tools in academic research laboratories, and found that a combination of tools and approaches may be most effective for managing risks.
  3. “A Framework for Assessing Laboratory Safety Culture in Academic Research Institutions” – This 2020 study developed a framework for assessing laboratory safety culture in academic research institutions, which can help identify areas for improvement and promote a culture of safety.
  4. “Enhancing Laboratory Safety Culture Through Peer-to-Peer Feedback and Coaching” – This 2020 study found that peer-to-peer feedback and coaching can be an effective way to enhance laboratory safety culture, as it encourages open communication and feedback among colleagues.
  5. “Assessing the Effectiveness of Laboratory Safety Training Programs for Graduate Students” – This 2019 study evaluated the effectiveness of laboratory safety training programs for graduate students, and found that interactive and hands-on training was more effective than traditional lecture-based training.
  6. “Improving Laboratory Safety Through the Use of Safety Climate Surveys” – This 2018 study found that safety climate surveys can be an effective way to improve laboratory safety, as they provide insight into employee perceptions of safety culture and identify areas for improvement.
  7. Chemistry laboratory safety climate survey (CLASS): A tool for measuring students’ perceptions of safety

These recent research findings suggest that laboratory safety culture can be improved through a variety of approaches, including hazard assessment tools, peer-to-peer feedback and coaching, interactive training, and safety climate surveys.  Some of these findings will likely set the standard of care we will see in safety standards incorporated by reference into public safety regulations. 

Related:




November 29, 2021

Today we break down the literature setting the standard of care for the safety and sustainability of instruction and research laboratories in the United States specifically; and with sensitivity to similar enterprises in research universities elsewhere in the world.  We will drill into the International Code Council Group A titles which are receiving public input until January 10, 2022.

Join us by clicking the Daily Colloquia link at the upper right of our home page.

The original University of Michigan Workspace for [Issue 13-28] in which we advocate for risk-informed eyewash and emergency shower testing intervals has been upgraded to the new Google Sites platform: CLICK HERE

Related:


September 20, 2021

 

Today we break down the literature setting the standard of care for the safety and sustainability of instruction and research laboratories in the United States specifically; and with sensitivity to similar enterprises in research universities elsewhere in the world.

Classification of Laboratory Ventilation Design Levels – ASHRAE

ASHRAE Laboratory Design Guide 

Join us by clicking the Daily Colloquia link at the upper right of our home page.


May 10, 2021

Today we will poke through a few proposals for the 2021/222 revision of the International Code Council’s Group A Codes.  For example:

IFC § 202 et. al | F175-21| Healthcare Laboratory Definition

IBC § 202 et. al | E7-21| Collaboration Room

IBC § 1110.3 et. al | E143-21| Medical scrub sinks, art sinks, laboratory sinks

. . .

IFGC § 403, etl al| G1-21| Accessibility of fuel gas shut off valves

IBC § 307 Tables  | G36-21| For hazardous materials in Group B higher education laboratory occupancies

IBC § 302.1 et. al |  G121-21| Separation from other nonlaboratory areas for higher education laboratories

And about 20 others we discussed during the Group A Hearings ended last week.  We will have until July 2nd to respond.  The electrotechnology proposals will be referred to the IEEE Education & Healthcare Facilities Committee which is now preparing responses to this compilation by Kimberly Paarlberg.


March 15, 2021

Today we break down action in the literature governing the safety and sustainability of instruction and research laboratories in the United States specifically; but also with sensitivity to similar enterprises in research universities elsewhere in the world.  “Everyone” has an iron in this fire:

International Building Code Chapter 38: Higher Education Laboratories

ASCE Structural Engineering Institute (so that the foundations and “bone structure” of laboratories survive earthquakes, floods and other Force majeure mayhem)

National Electrical Code Chapter 5: Special Occupancies

ASHRAE Laboratory Design Guide

NFPA 45  Standard on Fire Protection for Laboratories Using Chemicals

IEEE Electrical Safety in Academic Laboratories

…and ISEA, AWWA, AIHA, BIFMA, CLSI, LIA, IAPMO, NSF, UL etc. among ANSI accredited standards developing organizations…

..and addition to NIST, Federal code of Regulations Title 29, NIH, CDC, FEMA, OSHA etc

…and state level public health regulations; some of them adapted from OSHA safety plans

Classroom and offices are far simpler.  Laboratories are technically complicated and sensitive area of concern for education communities not only responsible for the safety of instructional laboratories but also global communities with faculty and staff that must simultaneously collaborate and compete.  We have been tip-toeing through the technical and political minefields for nearly 20 years now and have had some modest success that contributes to higher safety and lower costs for the US education community.

Colloquium open to everyone.  Use the login credentials at the upper right of our home page.

Source: NACUBO.ORG


More

Occupational Safety and Health Administration

National Institutes of Health

Centers for Disease Control and Prevention

NFPA Fire Code requirements for laboratories at colleges and universities

Clinical and Laboratory Standards Institute

National Conference of Standards Laboratories

National Institute of Standards and Technology/Information Technology Laboratory

The NELAC Institute

Laboratory Safety Guidance

Biosafety Cabinetry

 

Laboratory Design

March 7, 2024
mike@standardsmichigan.com

No Comments

Update: 28 September 2023

Update: 10 May 2023

Update: 27 February 2023

Updated: September 20, 2021

Original Post: May 25, 2019

 

Colleagues in the US education facility industry who collaborated with the original University of Michigan codes and standards advocacy enterprise ahead of the launch of ISO TC 276 Biotechnology standard in 2015 may recall how the University of Michigan recommended that ANSI request removal of “facilities” from the scope of the proposed biotechnology standard; administered by the Deutsches Institut für Normung committee.

Our recommendation was accepted; thereby partitioning the science of biotechnology from the facilities that supported that activity as much as possible.  Back in the early 2000’s we found the US research community in higher education was indifferent to participation in international standards of any kind; despite the concentration of chemical, energy, environmental air, electrical and fire safety risk aggregations.

Now the scope of this standard appears to recover some of the facility scope in another title; a few of the key details linked here.

CLICK IMAGE

Since the beginning of the original University of Michigan standards advocacy enterprise described in our ABOUT we found the US research community indifferent to participation in standards  development of any kind; much less international standards.  To a large degree it remains so.  Perhaps in the fullness of time, respected voices will join ours.

The Standards Administration of China is the Global Secretariat.  The American National Standards Institute participates as an Observer.  The business plan posted in 2019 is linked below:

ISO TC 336 Laboratory Design 22 March 2023 336 L

ISO TSP 290 (Laboratory Design) | 2019  (Shown for reference only)

You may communicate directly with Steve Cornish: scornish@ansi.org on any matter regarding this project.

Starting 2023  we are breaking up our coverage of laboratory-related best practice titles accordingly:

Laboratories 100 will cover all relevant standardization catalogs with special attention to titles that are incorporated by reference into public safety and sustainability laws.

Laboratories 200 will cover laboratory occupancies primarily for teaching and healthcare clinical delivery.

Laboratories 400 will cover laboratories for scientific research including medical research.

Laboratories 500 is broken out as a separate but related topic and will cover conformity and case studies that resulted in litigation.  Both Laboratories 200 and 400 will refer to the cases but not given a separate colloquium unless needed.

We maintain titles from the project on the standing agendas of our periodic Global and Laboratories conversations open to everyone.  Always at 15:00 UTC.

"Every child is an artist. The problem is how to remain an artist once we grow up." - Friedrich Nietzsche

Issue: [19-134]

Category: Academic, International

Colleagues: Mike Anthony, Christine Fischer, Jack Janveja, Richard Robben, Markus Scheufele, Larry Spielvogel

Source: ANSI Standards Action | Page 33

ANSI-Accredited U.S. Technical Advisory Groups (TAGS) to ISO

LINK TO ORIGINAL UNIVERSITY OF MICHIGAN ISO STANDARDS WORKSPACE

 


Reposted by ANSI July 13, 2020

Last week the American National Standards Institute notified stakeholders that the Standardization Administration of China (SAC) — the ISO member body for China — has submitted a proposal for a new field of ISO technical activity on “Laboratory Design”.   The proposal bears resemblance to a notice of public consultation that was posted last year; now linked below:

ISO TSP 290 (Laboratory Design)

Comments on the (apparently revised) proposal are due at ANSI offices on August  3rd.

We refer you to Steve Cornish (scornish@ansi.org) and/or Henry Cheung (HCheung@ansi.org) at the American National Standards Institute.

We maintain consensus products of this nature on our Global and Laboratory teleconferences; open to everyone.  See our CALENDAR for the next online meeting.


Originally posted May 25, 2019

 

ISO Member Nations | Click on image

 

“Science, my boy, is made up of mistakes,

but they are mistakes which it is useful to make,

because they lead little by little to the truth.” 

― Jules Verne, Journey to the Center of the Earth

 

The Standardization Administration of China (SAC) — the ISO member body for China — has submitted a proposal for a new field of ISO technical activity on “Laboratory Design” with the following scope statement:

“…Standardization in the field of laboratory design including site selection and design planning, the functional division of experimental areas, the determination of scientific and technological processes, layouts and design of furniture, and the scientific design of the facility taking into account environmental conditions and impact.  Excluded:

– IEC/TC 64 (Electrical installations and protection against electric shock);
– IEC/TC 81 (Lightning protection);
– IEC/TC 66 (Safety of measuring, control and laboratory equipment);
– IEC/TC 85 (Measuring equipment for electrical and electromagnetic quantities).

Once the new TC is established, liaisons with other relevant ISO technical committees will be established, including ISO/TC 48(laboratory equipment), ISO/TC 212 (Clinical laboratory testing and in vitro diagnostic test systems)and CASCO as well as relevant IEC technical committees (IEC/TC 45(Nuclear instrumentation), IEC/TC 62 (Electrical equipment in medical practice), IEC/TC 65 (Industrial-process measurement, control and automation), IEC/TC 76 (Optical radiation safety and laser equipment) and IEC/TC 104 (Environmental conditions, classification and methods of test).  Note: the TC will support the contribution of the laboratory design industry to UN Sustainable Development Goals and enable countries to address a wide range of global issues including eradication of hunger and poverty, health, climate change and economic development….”

“…The new TC will stipulate technical design requirements for a diverse range of laboratories with different functions and responsibilities. It will include, but not limited to:

1. site selection and design planning;
2. layouts and design of furniture (e.g workbenches, fume hoods, safety showers, biological safety cabinets, etc);
3. electrical, water and gas supply systems, drainage, fire prevention, HVAC, auto-control and decoration;
4. laboratories featuring bio-safety, constant temperature and humidity, and other special laboratories;
5. laboratory safety, staff health, environmental protection, and energy saving;
6. Smart laboratory (use of new technologies such as big data, cloud computing, block chain, etc. to empower laboratories, e.g. increase the depth and width of services provided to clients, improve the servicing level during the consulting, design and maintenance phases.)…”

A Giant Traditional Chinese Painting | CLICK ON IMAGE

A Giant Traditional Chinese Painting | CLICK ON IMAGE

“…The setting up of laboratory design TC and establishment of laboratory design standards will benefit organizations and groups as follows:

      1. Laboratory owners (including governments, scientific agencies and enterprises, etc.): Laboratory owners will understand the principles and methods of laboratory design for better management of laboratory design, construction, acceptance and operation. The investment budget will have a reference basis; construction cost will be better controlled; investment risk will be lowered; project quality can be better evaluated; construction cycle will be shortened; capital usage efficiency will be raised;
      1. Laboratory designers: Laboratory designers will understand the principles and methods of laboratory design, and will have standards to follow and verify by, make fewer design faults and ensure laboratory design to be more scientific and professional; laboratory environmental facility will be improved in terms of safety, energy conservation, environmental friendliness, as well as impacts on human health and well-being.
      1. Laboratory constructors: Laboratory constructors will have construction and acceptance standards to refer to; the construction quality will be raised; technology advancement will be promoted; the industry will be further regulated.
      1. Laboratory users: Laboratory users will understand the principles and methods of laboratory design; stakeholders can communicate with each other in a more informed way and evaluate laboratories based on common standards, making laboratory use, operation and management more scientific and regulated. Smart laboratories will allow more functions and add value by integrating technologies of big data, cloud computing and internet of things, etc.
      1. Laboratory operators: Laboratory operators will understand the principles and methods of laboratory design, which will facilitate the maintenance of laboratories; Smart laboratories will enable the remote digital control of laboratory operation and facilitate reliable, efficient and convenient maintenance.
      1. Society:  The society will be able to cultivate more professional personnel in the field of laboratory design; a more sound and fair development of laboratory design and construction both home and abroad will be facilitated; more energy-saving and environmental-friendly design will promote the sustainable development of the society; the premium laboratories will inspire the creativity of researchers and promote the advancement and development of technologies. Smart laboratories will facilitate technological progress, product quality improvement, data recognition as well as international trade….”

“Louis Pasteur” | Albert Edelfelt (1885)

If the proposal is accepted, China is willing to undertake the work of secretariat of the new TC and will provide all necessary resources including financial and human resources as well as facility supports.   A partnership agreement between China and France at committee level is foreseen.   

Anyone wishing to review the proposal can request a copy by contacting ANSI’s ISO Team (isot@ansi.org), with a submission of comments to Steve Cornish (scornish@ansi.org) by close of business on Friday, June 28th

N.B. This proposal will be featured in an ANSI Online news story and open for public review and comments from relevant US stakeholders via notice in Standards Action. In addition, ANSI will conduct targeted outreach to gather input on this proposal.  Based on the input received from US stakeholders, a recommended ANSI position and any comments will be developed and presented to the AIC for approval before the ISO voting deadline of August 13, 2019.  Contact Steve Cornish (scornish@ansi.org)

ANSI’s due process requirements were applied to this ISO/SIA/AFNOR proposal and comment from US stakeholders were consulted.  It appears that most US stakeholders do NOT want to participate in the development of this standard as currently written.   The public comments are available from Henry Cheung (HCheung@ansi.org) who has also prepared a draft statement from ANSI.

Comments on the draft statement are due August 2nd.  

 

Perspective:  We have been down this road before.  The original University of Michigan user-interest advocacy enterprise — through ANSI — was persuasive in having “facilities” struck from the scope of the original ISO TC/276 Biotechnology project proposal (Global Secretariat: Deutsches Institut für Normung) in 2012.  Now we circle back to a proposal that captures the facility component as an articulated enterprise which, in large research colleges and universities, is a delicate risk aggregation that generates significant revenue.

As always, we are happy to discuss any best practice title from anywhere on earth that affects the safety and sustainability agenda of education communities.   Just click the login credentials at the upper right of our home page any day at 11 AM Eastern time.    We also sweep through the status of international consensus products emerging from ISO, IEC and ITU technical and management committees.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [19-134]

Category: Academic, International

Colleagues: Mike Anthony, Christine Fischer, Jack Janveja, Richard Robben, Markus Scheufele, Larry Spielvogel

Source: ANSI Standards Action | Page 33

LINK TO ORIGINAL UNIVERSITY OF MICHIGAN ISO STANDARDS WORKSPACE

 

 

The “Perfect Pancake” & DYI Buttermilk

March 7, 2024
mike@standardsmichigan.com
, , ,
No Comments

Newcastle University, founded in 1834 as the School of Medicine and Surgery, evolved into a university in 1963.  Its origins are intertwined with the advancement of medical education in Newcastle. Like many European universities its main “campus’ is integrated into the heart of the city.

Newcastle University | Estates and Facilities

Newcastle University | North East England

DYI Buttermilk

Strawberries

„Northern Lights”

March 7, 2024
mike@standardsmichigan.com
,
No Comments

Chór Śląskiego Uniwersytetu Medycznego w Katowicach

This is a choral composition that falls within the genre of modern classical music.  Ola Gjeilo is a Norwegian composer and pianist known for his engaging and atmospheric choral works; here inspired by the Aurora Borealis.

The text is the Latin Pulchra es, amica mea, from Song of Solomon:

Thou art beautiful, O my love,
sweet and comely as Jerusalem,
terrible as an army set in array.
Turn away thy eyes from me,
for they have made me flee away.

History of Western Civilization Told Through the Acoustics of its Worship Spaces

Polska

Fire Protection for Laboratories Using Chemicals

March 7, 2024
mike@standardsmichigan.com

No Comments

Because of the robustness of the environmental safety units in academia we place this title in the middle of our stack of priorities. Laboratory safety units are generally very well financed because of the significance of the revenue stream they produce.  We place higher priority on standby power systems to the equipment and, in many cases, the subjects (frequently animals)

Chemical laboratory, Paris. 1760

 

We were advocating #TotalCostofOwnership concepts in this document before our work was interrupted by the October 2016 reorganization (See ABOUT).   Some of that work was lost so it may be wise to simply start fresh again, ahead of today’s monthly teleconference on laboratory safety codes and standards.  The scope of NFPA 45 Standard on Fire Protection for Laboratories Using Chemicals is very large and articulated so we direct you to its home page.

Suffice to say that the conditions under which NFPA 45 may be applied is present in many schools, colleges and universities — both for instructional as well as academic research purposes.  Some areas of interest:

  • Laboratory Unit Hazard Classification
  • Laboratory Unit Design and Construction
  • Laboratory Ventilating Systems and Hood Requirements
  • Educational and Instructional Laboratory Operations

We find considerable interaction with consensus documents produced by the ICC, ASHRAE and NSF International.

It is noteworthy that there are many user-interest technical committee members on this committee from the State University of New York, the University of Kentucky, West Virginia University, the University of Texas, University of California Berkeley and the University of Texas San Antonio; thereby making it one of only a few ANSI accredited standards with a strong user-interest voice from the education.  Most of them are conformance/inspection interest — i.e. less interested in cost reduction — but they are present nonetheless.  We pick our battles.

The 2023 revision is in an advanced stage of development and on the agenda of the June 2023 Technical Standards Agenda.  It will likely be approved for release to the public later this year.

We always encourage direct participation.  You may communicate directly with Sarah Caldwell or Laura Moreno at the National Fire Protection Association, One Batterymarch Park, Quincy, MA 02169-7471 United States.  TEL: 1 800 344-3555 (U.S. & Canada); +1 617 770-3000 (International)

This standard is on the standing agenda of our periodic Laboratory standards teleconference.  See our CALENDAR for the next online meeting; open to anyone.

Issue: [19-60]

Category: Prometheus, Laboratory, Risk

Colleagues: Richard Robben, Mark Schaufele

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content