Rainwater Catchment Systems

Loading
loading...

Rainwater Catchment Systems

July 9, 2025
mike@standardsmichigan.com

No Comments

Duke University West Campus Water Reclamation Pond | Click on image

One of several titles asserting best practice for rainwater catchment systems — an emergent design feature many college and university facility departments are signaling to demonstrate their conformity to the campus sustainability zietgeist — is ASPE 63 Rainwater Catchment Systems; developed and published by the American Society of Plumbing Engineers.  From the project prospectus:

Scope: This standard covers requirements for the design and installation of rainwater catchment systems that utilize the principle of collecting and using precipitation from a rooftop and other hard, impervious building surfaces. This standard does not apply to the collection of rainwater from vehicular parking or other similar surfaces.

Project Need: The purpose of this standard is to assist engineers, designers, plumbers, builders/developers, local government, and end-users in safely implementing a rainwater catchment system.

Stakeholders: Plumbing engineers, designers, plumbers, builders/developers, local government, end users.

You may obtain a copy of the 2020 edition by contacting Gretchen Pienta, (847) 296-0002, gpienta@aspe.org,  6400 Shafer Court, Suite 350, Rosemont, IL 60018.   We encourage front-line/workpoint experts and facility managers to participate in the ASPE standards development process.   Start with the link below:

ASPE Standards Development Home Page

We have all water system codes and standards on the agenda of our next monthly Mechanical, Plumbing and Rain colloquia  See our CALENDAR for the next online meeting; open to everyone.

Issue: [13-61]

Category: Mechanical Engineering, Water

Colleagues: Richard Robben, Larry Spielvogel

University of Toledo


Related: Posted 10 September 2020

Rainwater Catchment Systems 400

Solar (Summer)

July 8, 2025
mike@standardsmichigan.com
No Comments

Sie strahlt vor Freude über ihre Auszeichnung – TH-Alumna Melanie Klaus. Für ihre Bachelorarbeit im Bereich Erneuerbare Energien wurde sie vom Solarenergieförderverein Bayern geehrt. In ihrer Bachelorarbeit im Studiengang Elektro- und Informationstechnik untersuchte sie das Zusammenspiel von Wind- und Solarenergie und den Nutzen, der sich hieraus für die regenerative Energieerzeugung erzielen lässt. Untersucht wurde also die Nutzung der natürlichen Kombination von Wind und Sonne für die Energieerzeugung. Um die Rentabilität dieser Einspeisekombination zu ermitteln, hat Melanie Klaus ein Software-Tool entwickelt, welches zur Planung und Simulation abgestimmter Photovoltaik-Wind-Kombinationen dient und bereits für die Errichtung einer Photovoltaik-Anlage zu einem Windpark eingesetzt wird.

Starting 2023 we separated our coverage of solar energy standards from our standing Electrical and Energy colloquia and placed emphasis on seasonal life cycle returns.   We start with the following titles

IEC TC 82 Solar photovoltaic energy systems

Underwriters Laboratories 1703 PV Module Certification

ASTM E772 Standard Terminology of Solar Energy Conversion

IEEE 1562 Guide for Array and Battery Sizing in Stand-Alone Photovoltaic Systems

NEMA Solar Photovoltaic Council

NECA 412 Standard for Installing and Maintaining Photovoltaic Power Systems

NFPA 70 Articles 690-691

NFPA 70 Articles 705 & 855

International Code Council Section 1607 Photovoltaic panels or modules

ASHRAE International: 90.1 Building Energy Code & 189.1 Green Energy Code

Time permitting: Example design specification and construction contract.

"Education is simply the soul of a society as it passes from one generation to another" - G.K. Chesterton

Other standards developers and publishers are also present in this domain but this list is where we will start given that we only have an hour.   Join us today at 16:00 with the login credentials at the upper right of our home page.

Readings:

What are the hidden costs of solar panels?

Do We Have Enough Silver, Copper, And Other Materials To Keep Up With The Growth Of Solar?

Mining Raw Materials for Solar Panels: Problems and Solutions

Grid-Connected Microgrid Battery Energy Storage Systems

Solar Panels on King’s College Chapel Roof

July 8, 2025
mike@standardsmichigan.com
, ,
No Comments

“…The solar panels will populate the gothic chapel roof, producing an approximate 105,000 kWh of energy a year – enough to run the chapel’s electricity, and saving around £20,000 in energy bills per year. The college confirmed that any excess energy would be sold off to the national grid.

King’s College Announcement

Solar Panels on King’s College Chapel Roof

Solar panels perform better when listening to music:

A 2013 study by researchers at Imperial College London and Queen Mary University of London showed that solar panels actually work better when exposed to music, of multiple genres. Scientists at the university proved that when exposed to high pitched sounds, like those found in rock and pop music, the solar cells’ power output increased by up to 40 percent. Classical music was also found to increase the solar cells’ energy production, but slightly less so than rock and pop, as it generally plays at a lower pitch than pop and rock. Whether they know it or not, British band Coldplay are just one of the artists benefitting from this research. During their 2021 tour, they installed solar photovoltaic panels in the build-up to each show, “behind the stage, around the stadium and where possible in the outer concourses”…

BS 7671 Requirements for Electrical Installations

The Major Differences in Electrical Standards Between the U.S. and Europe

Representative Calculation: (WAG)

To determine how much electrical power and lighting 12 kilowatts (kW) will provide for an educational facility, we need to consider the following factors:

    1. Power Distribution: How the 12 kW will be distributed across different electrical needs such as lighting, computers, HVAC (heating, ventilation, and air conditioning), and other equipment.
    2. Lighting Requirements: The specific lighting requirements per square foot or room, which can vary based on the type of facility (classrooms, libraries, laboratories, etc.).
    3. Efficiency of Lighting: The type of lighting used (e.g., LED, fluorescent, incandescent) as this affects the power consumption and lighting output.

We start with lighting.

    1. Lighting Efficiency:
      • LED lights are highly efficient, typically around 100 lumens per watt.
      • Fluorescent lights are less efficient, around 60-70 lumens per watt.
    2. Lighting Power Calculation:
      • 12 kW (12,000 watts) of LED lighting at 100 lumens per watt would provide: 12,000 watts×100 lumens/watt=1,200,000 lumens
    3. Illumination Requirements:
      • Classroom: Approximately 300-500 lux (lumens per square meter).
      • Library or laboratory: Approximately 500-750 lux.
    4. Area Coverage:
      • If we target 500 lux (which is 500 lumens per square meter), we can calculate the area covered by the lighting: (1,200,000 lumens)/ 500 lux=2,400 square meters

Now we need to allocate power to other loads.

    1. Lighting: Assuming 50% of the 12 kW goes to lighting:
      • Lighting Power: 6 kW (6,000 watts)
      • Using the previous calculation: 6,000 watts×100 lumens/watt=600,000 lumens
      • Area Coverage for lighting (at 500 lux): (600,000 lumens)/500 lux=1,200 square meters
    2. Other Electrical Needs:
      • Computers and equipment: Typically, a computer lab might use around 100 watts per computer.
      • HVAC: This can vary widely, but let’s assume 4 kW is allocated for HVAC and other systems.

Breakdown:

    • Lighting: 6 kW
    • Computers/Equipment: 2 kW (e.g., 20 computers at 100 watts each)
    • HVAC and other systems: 4 kW

Summary

    • Lighting: 12 kW can provide efficient LED lighting for approximately 1,200 square meters at 500 lux.
    • General Use: When distributed, 12 kW can cover lighting, a computer lab with 20 computers, and basic HVAC needs for a small to medium-sized educational facility.

The exact capacity will vary based on specific facility needs and equipment efficiency.

 

 

Solar Photovoltaic Energy Systems

July 8, 2025
mike@standardsmichigan.com
,
No Comments

Technical Committee 82 of the International Electrotechnical Commission is charged with preparing international standards for the full length of the solar energy power chain  The span of the power chain includes the light input, the cell itself, and the fittings and accessories to the end use (utilization) equipment.

Strategic Business Plan of IEC Technical Committee 82

The United States is the Global Secretariat for TC 82 through the US National Committee of the International Electrotechnical Commission (USNA/IEC) administered by the American National Standards Institute(ANSI).  Standards Michigan is a long-standing member of ANSI since our “standards journey” began at the University of Michigan in 1993.

The USNA/IEC and participates in its standards development processes; typically collaborating with global research and application engineers in the IEEE Industrial Applications Society and the IEEE Power and Energy Society.   To advance its agenda for lower #TotalCostofOwnership for US real asset executives and facility managers Standards Michigan also collaborates closely with subject matter experts who contribute to, and draw from, the knowledge base in the IEEE Education and Healthcare Facilities Committee (E&H).

The IEC permits public commenting on its draft standards; though you will need to establish login credentials:

IEC Public Commenting

Your comments will be reviewed by the IEC National Committee of the country you live in, which can decide to propose them as national input for the final draft of the IEC International Standard.  This approach makes it easier for individual nations to participate in IEC standards development processes because the resources that national standards bodies need to administer participation resides in Geneva and is managed there.  

“The Eclipse of the Sun in Venice, July 6, 1842” | Ippolito Caffi

We collaborate with the IEEE Education & Healthcare Facilities Committee which has its own platform to tracking commenting opportunities:

IEEE E&H/USNC/IEC Workspace

As of this posting, no interoperability redlines have been released for public consultation.   In large measure, IEC titles contribute to a level playing field among multi-national electrical equipment manufacturers so we should not be surprised that there are no redlines to review.   When they are released we place them on the agenda of the IEEE E&H Committee which meets 4 times monthly in European and American time zones.

Log in to the E&H Committee meeting

Issue: [18-240]

Category: Electrical Power, Energy Conservation

Contact: Mike Anthony, Jim Harvey, Peter Sutherland


LEARN MORE:

[1] US Commenters must route their comments through the USNA/IEC.

[2] Many product and installation standards are developed by the Association of Electrical Equipment and Medical Imaging Manufacturers (NEMA): CLICK HERE

[3]  NEMA comparison of NEC and IEC electrical safety standards

Dutch Institute for Fundamental Energy Research

 

 

Solarvoltaic PV Systems

July 8, 2025
mike@standardsmichigan.com

No Comments

“Icarus” Joos de Momper

National Electrical Code Articles 690 and 691 provide electrical installation requirements for Owner solarvoltaic PV systems that fall under local electrical safety regulations.  Access to the 2023 Edition is linked below;

2023 National Electrical Code

2026 National Electrical Code Second Draft Transcript | CMP-4

Insight into the technical problems managed in the 2023 edition can be seen in the developmental transcripts linked below:

Panel 4  Public Input Report (869 pages)

Panel 4  Second Draft Comment Report (199 pages)

The IEEE Joint IAS/PES (Industrial Applications Society & Power and Energy Society) has one vote on this 21-member committee; the only pure “User-Interest” we describe in our ABOUT.  All other voting representatives on this committee represent market incumbents or are proxies for market incumbents; also described in our ABOUT.

The 2026 National Electrical Code has entered its revision cycle.  Public input is due September 7th.

We maintain these articles, and all other articles related to “renewable” energy, on the standing agenda of our Power and Solar colloquia which anyone may join with the login credentials at the upper right of our home page.   We work close coupled with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in American and European time zones; also open to everyone.

 

 

 

 

How the Netherlands Prevents Flood Disasters

July 7, 2025
mike@standardsmichigan.com

No Comments

 

 

Federal Flood Risk Management Standard

Code for Fireworks Display

July 4, 2025
mike@standardsmichigan.com
, , ,
No Comments

“Fireworks over Castel Sant’Angelo in Rome” | Jacob Philipp Hackert (1775)

At least twice a year, and during performances with flame effects, public safety departments in colleges and universities have an elevated concern about campus citizen safety, and the safety of the host community, when fireworks are used for celebration.  We find very rigorous prohibitions against the use of fireworks, weapons and explosives on campus.  Education and enforcement usually falls on facility and operation campus safety units.

That much said, we follow development, but do not advocate in NFPA 1123 Code for Fireworks Display, because it lies among a grouping of titles that set the standard of care for many college and university public safety departments that sometimes need to craft prohibitions with consideration for the business purposes of entertainment and celebration in education facilities.   NFPA 1123 is not a long document — only 22 pages of core text — but it contains a few basic considerations for display site selection, clearances and permitting that campus public safety departments will coordinate with the host community.  It references NFPA 1126, Standard for the Use of Pyrotechnics Before a Proximate Audience and NFPA 160 Standard for the Use of Flame Effects Before an Audience.

Something to keep an eye on.  The home page for this code is linked below:

NFPA 1123 Code for Fireworks Display

For a sense of the technical discussions, transcripts of two developmental stages are linked below:

Public Input Report

Public Comment Report

Public comment on 2026 Edition proposed revisions is receivable until May 30, 2024.

We maintain this title on our periodic Prometheus colloquium.  See our CALENDAR for the next online meeting.

Issue: [16-134]

Category: Public Safety

Colleagues: Mike Anthony, Jack Janveja, Richard Robben

 


More

Readings / PYROTECHNIC ARTS & SCIENCES IN EUROPEAN HISTORY

The Chemistry of Fireworks

 

Banana Oatmeal Pancakes

July 3, 2025
mike@standardsmichigan.com

No Comments

Standards IowaIowa Facilities Management“John Francis Rague– Pioneer Architect of Iowa”

Other Breakfast Recipes

American Sign Language Coffee Chat | Iowa College of Liberal Arts & Sciences


Library of Congress: Scandinavian Migration to “New Sweden, Iowa”

Book of Ruth

July 3, 2025
mike@standardsmichigan.com
,
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content