AI Risk Management Framework

Loading
loading...

AI Risk Management Framework

June 30, 2025
mike@standardsmichigan.com
No Comments

 

We list notable NIST projects or efforts related to LLMs, based on available information from NIST’s publications and initiatives. These projects emphasize NIST’s role in advancing measurement science, standards, and guidelines for trustworthy AI systems, including LLMs. Note that some projects are specific studies, while others are broader programs that encompass LLMs.
  • Evaluating LLMs for Real-World Vulnerability Repair in C/C++ Code
    NIST conducted a study to evaluate the capability of advanced LLMs, such as ChatGPT-4 and Claude, in repairing memory corruption vulnerabilities in real-world C/C++ code. The project curated 223 code snippets with vulnerabilities like memory leaks and buffer errors, assessing LLMs’ proficiency in generating localized fixes. This work highlights LLMs’ potential in automated code repair and identifies limitations in handling complex vulnerabilities.
  • Translating Natural Language Specifications into Access Control Policies
    This project explores the use of LLMs for automated translation and information extraction of access control policies from natural language sources. By leveraging prompt engineering techniques, NIST demonstrated improved efficiency and accuracy in converting human-readable requirements into machine-interpretable policies, advancing automation in security systems.
  • Assessing Risks and Impacts of AI (ARIA) Program
    NIST’s ARIA program evaluates the societal risks and impacts of AI systems, including LLMs, in realistic settings. The program includes a testing, evaluation, validation, and verification (TEVV) framework to understand LLM capabilities, such as controlled access to privileged information, and their broader societal effects. This initiative aims to establish guidelines for safe AI deployment.
  • AI Risk Management Framework (AI RMF)
    NIST developed the AI RMF to guide the responsible use of AI, including LLMs. This framework provides a structured approach to managing risks associated with AI systems, offering tools and benchmarks for governance, risk assessment, and operationalizing trustworthy AI across various sectors. It’s widely applied in LLM-related projects.
  • AI Standards “Zero Drafts” Pilot Project
    Launched to accelerate AI innovation, this project focuses on developing AI standards, including those relevant to LLMs, through an open and collaborative process. It aims to create flexible guidelines that evolve with LLM advancements, encouraging input from stakeholders to ensure robust standards.
  • Technical Language Processing (TLP) Tutorial
    NIST collaborated on a TLP tutorial at the 15th Annual Conference of the Prognostics and Health Management Society to foster awareness and education on processing large volumes of text using machine learning, including LLMs. The project explored how LLMs can assist in content analysis and topic modeling for research and engineering applications.
  • Evaluation of LLM Security Against Data Extraction Attacks
    NIST investigated vulnerabilities in LLMs, such as training data extraction attacks, using the example of GPT-2 (a predecessor to modern LLMs). This project, referencing techniques developed by Carlini et al., aims to understand and mitigate privacy risks in LLMs, contributing to safer model deployment.
  • Fundamental Research on AI Measurements
    As part of NIST’s AI portfolio, this project conducts fundamental research to establish scientific foundations for measuring LLM performance, risks, and interactions. It includes developing evaluation metrics, benchmarks, and standards to ensure LLMs are reliable and trustworthy in diverse applications.
  • Adversarial Machine Learning (AML) Taxonomy for LLMs
    NIST developed a taxonomy of adversarial machine learning attacks, including those targeting LLMs, such as evasion, data poisoning, privacy, and abuse attacks. This project standardizes terminology and provides guidance to enhance LLM security against malicious manipulations, benefiting both cybersecurity and AI communities.
  • Use-Inspired AI Research for LLM Applications
    NIST’s AI portfolio includes use-inspired research to advance LLM applications across government agencies and industries. This project develops guidelines and tools to operationalize LLMs responsibly, focusing on practical implementations like text summarization, translation, and question-answering systems.

Remarks:

  • These projects reflect NIST’s focus on evaluating, standardizing, and securing LLMs rather than developing LLMs themselves. NIST’s role is to provide frameworks, guidelines, and evaluations to ensure trustworthy AI.
  • Some projects, like ARIA and AI RMF, are broad programs that encompass LLMs among other AI systems, but they include specific LLM-related evaluations or applications.

 

Timon of Athens

June 28, 2025
mike@standardsmichigan.com
, , ,
No Comments

The Oxford Union Debating Society, founded in 1823, is one of the world’s most prestigious debating societies, affiliated with the University of Oxford. It has hosted numerous influential speakers and debates, including historical figures like Winston Churchill and Malcolm X. Over the years, it has played a vital role in shaping public discourse and fostering critical thinking among students. The society’s iconic debating chamber and rich tradition of lively debates have made it an enduring institution in the world of debate and public speaking.

“In an era of cancellation and defenestration we sometimes forget that we both cannot go on like this and that we have been here before. We know this because our greatest writers and artists have addressed this question in their own times.

When Roger [Scrouton] was going through his own battle with the shallows I often thought of Shakespeare’s rarely performed but great play Timon of Athens. Timon has the whole world before him. He is surrounded by friends and admirers. He is generous to all. Yet he falls on hard times and when he does absolutely everybody deserts him. He is left with nothing and nobody, and risks being filled with despair and rage. It does not help that he is shadowed by the cynical philosopher Apemantus, who has warned him that just such a desertion might occur.”

— Douglas Murray

Service Level Agreements

June 28, 2025
mike@standardsmichigan.com
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

“Seek Ye First”

June 27, 2025
mike@standardsmichigan.com
No Comments

“And therefore, I said, Glaucon, musical training is a more potent instrument than any other, because rhythm and harmony find their way into the inward places of the soul, on which they mightily fasten, imparting grace, and making the soul of him who is rightly educated graceful…”

— Plato, The Republic, Book III, 401d–402a

Standards Pennsylvania

https://youtu.be/SufEe-d4DN4?si=c07WOdgnlaVybant

Summer Sport

June 27, 2025
mike@standardsmichigan.com

No Comments

“No citizen has a right to be an amateur in the matter of physical training…

what a disgrace it is for a man to grow old without ever seeing

the beauty and strength of which his body is capable.”

— (Plato, Republic 403d)

Athena with Hermes, God of Sport

Today we slice horizontally through the multitude of technical and policy silos applicable to seasonal recreational and competitive sport activity.  We limit our examination to the conformance catalogs of ANSI. ASHRAE. ASTM, AWWA, ICC, IEEE, IES, NFPA, NSF International, and UL.

https://en.wikipedia.org/wiki/2028_Summer_Olympics

Relevant changes proposed for the next revision of the International Building Code:

Sprinkler coverage over bleachers or sport spectator seating (p. 665)

Lightning Protection Systems (p. 751)

Spectator live loading on bleachers (p. 1098)

Permitting of outdoor luminaires per zoning codes (p. 2587-2593)

Last year we examined the standards that applies to the 2024 Paris Olympics; worth a second look this year and in anticipation of the 2028 Summer Olympics in Los Angeles

Beach Volleyball

Equestrian

Rowing

Sailing

Swimming & Diving

Track & Field

We deal with the catalogs of CSA, DNV GL  ISO, IEC, SGS, TIC and TÜV in a separate, international session.

Swimming Pool Dimensions and Construction

Engineering in Sport

Readings / Sport, Culture & Society

National Center for Spectator Sports Safety and Security

Maths and Sport

A novel smart energy management system in sports stadiums

Athletic Equipment Safety Standards

More:

Category: Recreation and Sport Facilities

Uniform Swimming Pool, Spa & Hot Tub Code

June 27, 2025
mike@standardsmichigan.com
,
No Comments
water

“The Bathing Pool” / Hubert Robert (French, 1733–1808) / Gift of J.P. Morgan

2024 Uniform Swimming Pool, Spa and Hot Tub Code

READ-ONLY ACCESS

The IAPMO code development process is one of the best in the land.  Its Read-Only Access — needed for light research — is also the best in the land; unlike other ANSI accredited standards developers (who shall be un-named).   The current edition is dated 2024, with the 2027 revision accepted public input until March 3, 2025 according the schedule linked below:

2027 USPSHTC Code Development Calendar

Related:

What are Plumbing Codes?

Uniform Plumbing Code

Coronavirus in Plumbing Systems

Stata Center

June 26, 2025
mike@standardsmichigan.com

No Comments

Financials and Endowment 2024: Investments returned 8.9 percent 2024; endowment $24.6 billion

Named after its major donor — co-founder of Analog Devices — this Frank Gehry designed holds the top spot for highest absolute cost per square foot of any US university research — just shy of $500 million in today’s dollars.

The project replaced a “temporary” structure from World War II known for fostering innovation, particularly through the MIT Radiation Laboratory. The new center was intended to continue this legacy by housing the Computer Science and Artificial Intelligence Laboratory (CSAIL), the Laboratory for Information and Decision Systems (LIDS), and the Department of Linguistics and Philosophy, while promoting interdisciplinary collaboration through its innovative design.


The donations were driven by MIT’s goal to consolidate its computer science, electrical engineering, and artificial intelligence departments into a state-of-the-art facility to encourage the exchange of ideas and technology. The project, completed in 2004, faced challenges, including cost overruns and a subsequent lawsuit against Gehry and contractor Skanska USA for alleged design and construction flaws, such as leaks and drainage issues. This lawsuit was amicably resolved in 2010. Despite these issues, the Stata Center remains a landmark of MIT’s campus, celebrated for its bold architecture and role in fostering innovation.

 

Other major contributors:

  • Bill Gates, who donated $20 million through the William H. Gates Foundation, resulting in one of the center’s towers being named the Gates Tower.
  • Alexander W. Dreyfoos Jr. (MIT class of 1954), who gave $15 million, leading to the naming of the Dreyfoos Tower.
  • Morris Chang of TSMC and Charles Thomas “E.B.” Pritchard Hintze (an MIT graduate associated with JD Edwards, now Oracle), who also provided significant funds.
  • Steven Kirsch, founder of Infoseek, who contributed $2.5 million specifically for the construction of the center’s auditorium.

Site & Survey

June 25, 2025
jia
No Comments

The Society for College and University Planning: Ann Arbor, Michigan

University of Michigan 1855

Site and survey standards play a crucial role in the planning, development, and management of large college campuses.  They are wildly interdependent with the politics of the host community.   Some considerations:

  1. Optimal Land Use: Large college campuses often have extensive land holdings. Site and survey standards help ensure that the land is utilized efficiently, with consideration given to factors such as building placement, parking areas, green spaces, and pedestrian pathways. This optimization enhances the functionality of the campus while also preserving natural resources and promoting sustainability.
  2. Safety and Accessibility: Standards for site surveys include considerations for safety and accessibility. This involves ensuring that buildings are constructed in compliance with relevant codes and regulations to minimize hazards and risks. Additionally, accessibility standards ensure that campus facilities are designed to accommodate individuals with disabilities, promoting inclusivity and equal access to education.
  3. Infrastructure Planning: Site and survey standards are essential for planning the infrastructure of a large campus. This includes utilities such as water, electricity, sewage, and telecommunications. Proper planning ensures that these essential services are efficiently distributed throughout the campus to support academic, residential, and administrative functions.
  4. Environmental Considerations: Large college campuses often have a significant environmental impact. Site and survey standards can incorporate measures to minimize this impact, such as sustainable landscaping practices, stormwater management systems, and energy-efficient building designs. By adhering to these standards, campuses can reduce their carbon footprint and contribute to environmental conservation efforts.
  5. Regulatory Compliance: Compliance with local, state, and federal regulations is essential for any large-scale development project, including college campuses. Site and survey standards ensure that campus construction and expansion projects adhere to zoning laws, environmental regulations, building codes, and other legal requirements. Compliance with these standards mitigates the risk of fines, legal disputes, and delays in project implementation.
  6. Aesthetic and Cultural Considerations: Large college campuses often serve as cultural landmarks and focal points within their communities. Site and survey standards may include guidelines for architectural design, landscaping, and historical preservation to enhance the aesthetic appeal of the campus and celebrate its cultural heritage. By maintaining a visually appealing and culturally rich environment, campuses can attract students, faculty, and visitors while fostering a sense of pride and belonging among the campus community.

In summary, site and survey standards are essential for the effective planning, development, and management of large college campuses in the US. By ensuring optimal land use, promoting safety and accessibility, planning infrastructure, addressing environmental concerns, ensuring regulatory compliance, and enhancing aesthetics, these standards contribute to the overall success and sustainability of the campus environment.

Core standards for college campus land use typically encompass a range of factors including zoning, building placement, infrastructure, environmental considerations, accessibility, and aesthetics. While specific standards may vary depending on the institution and its location, here are some common core standards:

  1. Zoning and Land Use Regulations: Compliance with local zoning ordinances and land use regulations governing the allowable uses of the campus land, such as residential, academic, administrative, recreational, and green spaces.
  2. Building Placement and Density: Guidelines for the placement, size, and density of buildings on the campus to optimize land use, preserve green spaces, and maintain a cohesive campus layout.
  3. Pedestrian and Bicycle Infrastructure: Design standards for sidewalks, crosswalks, bike lanes, and pathways to ensure safe and convenient pedestrian and bicycle circulation throughout the campus.
  4. Vehicle Circulation and Parking: Standards for vehicular circulation, parking lot design, and parking space allocation to accommodate the transportation needs of students, faculty, staff, and visitors while minimizing congestion and maximizing safety.
  5. Utilities Infrastructure: Requirements for the provision of essential utilities such as water supply, electricity, sewage, telecommunications, and internet connectivity to support the functional needs of campus facilities.
  6. Environmental Conservation: Standards for sustainable landscaping, stormwater management, energy efficiency, waste management, and environmental stewardship to minimize the campus’s environmental footprint and promote ecological sustainability.
  7. Accessibility: Compliance with accessibility standards outlined in the Americans with Disabilities Act (ADA) to ensure that campus facilities, pathways, and amenities are accessible to individuals with disabilities, including wheelchair users, visually impaired individuals, and those with mobility impairments.
  8. Historical and Cultural Preservation: Guidelines for the preservation and adaptive reuse of historical buildings and cultural landmarks on the campus, as well as provisions for incorporating cultural elements and artwork into new development projects.
  9. Aesthetic Design Guidelines: Standards for architectural design, landscaping, signage, lighting, and public art to enhance the visual appeal and cohesive character of the campus environment while reflecting the institution’s identity and values.
  10. Safety and Security Measures: Implementation of safety and security measures, such as lighting, surveillance cameras, emergency call boxes, and landscaping strategies, to ensure a safe and secure campus environment for students, faculty, staff, and visitors.

These core standards provide a framework for the effective planning, development, and management of college campus land use, supporting the institution’s educational mission, fostering a vibrant campus community, and enhancing the overall quality of campus life.

Join us today at 16:00 UTC when we update our understanding of titles in the various applicable standards catalogs that affect the safety and sustainability of these “cities-within-cities”

Related:

How North Campus came to be

The ‘super-university’ moves north

Eero Saarinen 1954 Plan for North Campus

https://standardsmichigan.com/parking-lot-striping/
Higher education has long since become centers for the employment of the old, rather than the education of the young.

Illumination 400

June 24, 2025
mike@standardsmichigan.com
,
No Comments

IEEE Education & Healthcare Facilities Committee

NEC Section 226.6 Conductor Size and Support (B) Festoon Lighting

EC&M Article 225: Outside Branch Circuits

Electrical Time: Definition of Festoon Lighting

“Starry Night Over the Rhône” 1888 Vincent van Gogh


Today we refresh our understanding of the moment in illumination technologies for outdoor lighting systems— related but different from our exploration of building interior illumination systems in Illumination 200.  Later in 2024 we will roll out Illumination 400 (Holiday illumination) and Illumination 500 which explores litigation related to public illumination technology.  As cities-within-cities the shared perimeter of a campus with the host municipality has proven rich in legal controversy and action.

Illumination technology was the original inspiration for the electric utility industry; providing night-time security and transforming every sector of every economy on earth.  Lighting load remains the largest component of any building’s electric load — about 35 percent– making it a large target for energy regulations.

Our inquiry begins with selections from the following documents…

International Electrotechnical Commission TC 34 Lighting

IEC 60364 Electrical Installations in Buildings

2023 National Electrical Safety Code

IEEE P3001.9 – Recommended Practice for the Design of Power Systems Supplying Lighting Systems in Commercial and Industrial Facilities

Institution of Engineering and Technology: Recommendations for Energy-efficient Exterior Lighting Systems

2023 National Electrical Code: Article 410  (While the bulk of the NEC concerns indoor wiring fire hazards, there are passages that inform outdoor lighting wiring safety)

2019 ASHRAE 90.1: Chapter 9 Lighting

Illumination Engineering Society: Various titles

ISO/TC 274 Light and lighting

Salt Water River Project: Outdoor Lighting Standards

US DOE-EERE Building Energy Codes Program

…and about 20 other accredited, consortia or ad hoc standards developers and publishers aligned principally with vertical incumbents.  Illumination was the original inspiration (i.e. the first “killer app”) for the electrical power industry in every nation.  Its best practice literature reflects a fast-moving, shape-changing domain.

Click in today with the login credentials at the upper right of our home page.

Upper Wharfedale Primary Federation School District Yorkshire Dales

McGill University: Before electricity, streets were filled with gas lights

Outdoor lighting systems can be owned and maintained by different entities depending on the context and location. Here are some examples of ownership regimes for outdoor lighting systems:

  1. Public ownership: In this case, outdoor lighting systems are owned and maintained by the local government or municipal authority. The lighting may be installed in public spaces such as parks, streets, and other outdoor areas for the safety and convenience of the public.
  2. Private ownership: Outdoor lighting systems may be owned by private individuals or organizations. For example, a business owner may install outdoor lighting for security or aesthetic reasons, or a homeowner may install outdoor lighting in their garden or yard.
  3. Co-owned: Outdoor lighting systems may be owned jointly by multiple entities. For example, a residential community may jointly own and maintain outdoor lighting in their shared spaces such as parking areas, community parks, or recreational facilities.
  4. Utility ownership: Outdoor lighting systems may be owned and maintained by utility companies such as electric or energy companies. These companies may install and maintain street lights or other lighting systems for the public good.
  5. Third-party ownership: In some cases, a third-party entity may own and maintain outdoor lighting systems on behalf of a public or private entity. For example, a lighting contractor may install and maintain lighting in a public park on behalf of a local government.

The ownership regime of an outdoor lighting system can have implications for issues such as installation, maintenance, and cost-sharing. It is important to consider ownership when designing and implementing outdoor lighting systems to ensure their long-term effectiveness and sustainability.

More

International Commission on Illumination

National Electrical Manufacturers Association

National Electrical Contractors Association

Representative Specifications

Sam Houston State University | Division 26500 Interior and Exterior Lighting

University of Delaware | Division 265100 Interior Lighting

Cal Poly University San Luis Obispo | Division 265100 Interior Lighting

Relevant Research

Enhancing the Sustainability of Outdoor Floodlighting for Cultural Heritage Buildings

The Performance and Impact of LED Floodlights in an Outdoor Electrical Substation During Misty Weather Conditions

Replacement of HPS Luminaires with LED Luminaires for the Lighting Requirements of an Outdoor Electrical Substation

 

Luminaires, Lampholders, and Lamps

June 24, 2025
mike@standardsmichigan.com

No Comments

Best wiring safety practice for the illumination of educational settlement occupancies is scattered throughout the National Electrical Code with primary consideration for wiring fire safety:

  • Article 410 – Covers the installation of luminaires (fixtures), lampholders, and lamps, including requirements for wiring, grounding, and support.
  • Article 210 – Covers branch circuit requirements, including those for lighting circuits in dwellings and commercial buildings.
  • Article 220 – Provides guidelines for calculating lighting loads.
  • Article 225 – Addresses outside lighting installations.
  • Article 240 – Covers overcurrent protection for lighting circuits.
  • Article 250 – Deals with grounding and bonding, which is essential for lighting circuits.
  • Article 300 – Covers general wiring methods that apply to lighting circuits.

We have done a fair amount of work on this topic over the years, including writing the chapter on campus outdoor lighting for the soon-to-be-released IEEE 3001.9 Recommended Practice for the Design of Power Systems Supplying Lighting Systems in Commercial and Industrial Facilities.   

For our meeting please refer to the workspace we have set up for the 2026 Revision of the NEC:

2026 National Electrical Code Workspace

We will pick through specifics in the transcripts of Code Making Panels 10 and 18.

 

International Building Code: Chapter 12 Section 1204 Lighting

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content