Category Archives: Uncategorized

Loading
loading...

What is Happening to the Family, and Why?

“The family is nature’s masterpiece”

— George Santayana

 

Educated at Yale College, Somerville College, the University of Pennsylvania, Harvard Medical School and Columbia Law School, Amy Wax speaks to the Buckley Institute, founded by William F. Buckley (Yale 1950). Links to National Centers at Bowling Green State University, the University of Virginia and the University of Nebraska.

Inside Higher Ed (September 24, 2024): Amy Wav Update


In popular culture:

The Anthropology of Karens

People grow up in a web of relationships that is already in place, supporting them as they grow. From the inside out, it includes parents, extended family and clan, neighborhood groups and civic associations, church, local and provincial governments and finally national government.

Spring Sport

“When spring came, even the false spring,
there were no problems except where to be happiest”
Ernest Hemingway (A Moveable Feast, 1964)

University of Michigan Sailing Team | Great Lakes

We are consolidating over 10+ years of coverage of sport standards by the season now.  This is our first cut breaking the topic into four separate seasons.  Join us today at the usual hour when we sort through stabilized literature and the codes and standards open for public consultation

Soccer 

Sports, Recreational Facilities & Equipment

Rugby

University of Michigan | Washtenaw County

Rugby

Equestrian

George M Humphrey Equestrian Center ($7M, 2004)

Cricket

Baseball

Baseball Lighting

Sport Lighting

Tennis

New Pickleball & Tennis Courts

Track and Field

University of Colorado | Boulder County

Sports Equipment & Surfaces

Swimming

Uniform Swimming Pool, Spa & Hot Tub Code

Pool, Spa & Recreational Waters

Golf

Green Space

Beach Volleyball

Volleyball Court Lighting

University of Tennessee at Chattanooga

Field Hockey

Stadium & Arena Structural Engineering

 

Baseball Lighting

“Baseball at Night” | Morris Kantor (1934)

 

 

 

“Baseball is ninety percent mental

and the other half is physical.”

– Yogi Berra

 

After athletic facility life safety obligations are met (governed legally by NFPA 70, NFPA 101, NFPA 110,  the International Building Code and possibly other state adaptations of those consensus documents incorporated by reference into public safety law) business objective standards may come into play.  For business purposes, the documents distributed by the National Collegiate Athletic Association inform the standard of care for individual athletic arenas so that swiftly moving media production companies have some consistency in power sources and illumination as they move from site to site.  Sometimes concepts to meet both life safety and business objectives merge.

 

During the spring baseball season the document linked below provides guidance for illumination designers, contractors and facility managers:

NCAA Best Lighting Practices

Athletic programs are a significant source of revenue and form a large part of the foundation of the brand identity of most educational institutions in the United States.   We focus primarily upon the technology standards that govern the safety, performance and sustainability of these enterprises.  We cover the objectives of the energy conservation advocates in separate posts; notably advocates using the International Code Council and the ASHRAE suite to advance their agenda to press boxes and the entire baseball experience (interior and exterior) site in separate posts.

We collaborate very closely with the IEEE Education & Healthcare Facilities Committee where subject matter experts in electrical power systems meet 4 times each month in the Americas and Europe.

See our CALENDAR for our next Sport colloquium  We typically walk through the safety and sustainability concepts in play; identify commenting opportunities; and find user-interest “champions” on the technical committees who have a similar goal in lowering #TotalCostofOwnership.

Issue: [15-138]*

Category: Electrical, Energy Conservation, Energy,  Athletics & Recreation

Colleagues: Mike Anthony, Jim Harvey, Jose Meijer, Scott Gibbs, George Reiher


More

Comparison of MH and LED performance for sport lighting application

A novel smart energy management system in sports stadiums

Tracking pitches for broadcast television

Stadium Lights

Outdoor Lighting Design Guide

Sport Lighting

 

 

Bleachers, Folding Seating & Grandstands

“View of the Colosseum” 1747 Giovanni Paolo Panini

 

Play is the making of civilization—how one plays the game

more to the point than whether the game is won or lost.

 

We follow development of best practice literature for spectator seating structures produced by the International Code Council,  the National Fire Protection Association (NFPA 102),  the American Society of Civil Engineers Structural Engineering Institute (ASCE SEI-7).  There are also federal regulations promulgated by the Consumer Product Safety Commission.  (Note that some of the regulations were inspired by the several regional building code non-profits before the International Code Council was formed in year ~ 2000)

The parent standard from the International Code Council is linked below:

ICC 300 Standard on Bleachers, Folding and Telescopic Seating, and Grandstands

The development of this standard is coordinated with the ICC Group A Codes.  We have tracked concepts in it previous revisions; available in the link below.

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

As always, we encourage our colleagues with workpoint experience to participate directly in the ICC Code Development process.  CLICK HERE to get started.

Issue: [15-283]

Category: Athletics & Recreation, Architectural, Public Safety

Contact: Mike Anthony, Jack Janveja, Richard Robben

Virtual reality technology in evacuation simulation of sport stadiums


LEARN MORE:

Standard for Bleachers, Folding and Telescopic Seating, and Grandstands ICC 300-2017 edition Public Comment Draft – October 2017

ANSI Coverage / ICC 300-2017: Standard for Bleachers, Folding and Telescopic Seating, and Grandstands

 

Home Economics

Today at the usual hour we review the standards, codes, regulations and best practice literature for the safety and sustainability of facilities for teaching skills needed for supporting families.

Inglenook

Salutariness | Fashion

Commercial Kitchens

Life Safety Code

Electrical Safety

Energy Standard for *Sites* and Buildings

Current Issues and Recent Research

What the University of Michigan has done to reduce the life cycle cost of the real assets of educational settlements in the USA

What is Happening to the Family, and Why?

International Plumbing Code

The International Plumbing Code (IPC) is developed to harmonize with the full span of ICC’s family of building codes.  The IPC sets minimum regulations for plumbing systems and components to protect life, health and safety of building occupants and the public. The IPC is available for adoption by jurisdictions ranging from states to towns, and is currently adopted on the state or local level in 35 states in the U.S, the District of Columbia, Guam, and Puerto Rico.

CLICK HERE for the 2021 Public Access Edition 

SOURCE: CLICK ON IMAGE | Contact ICC for most recent IPC adoption map

 

The IPC is developed in the ICC Group A Code development framework and concluded its revision cycle in late 2021 under the circumstances of the pandemic.  The 2023 International Plumbing Code revision cycle will not begin until early 2023 but it is never too soon to understand the issues from previous revision cycles to enlighten approaches to the forthcoming Group A revision cycle.   The complete monograph of the Group A Codes is linked below, with comments on IPC proposals starting on Page 1417 of this 1613 page document:

2021 IPC | Group A Public Comment Monograph

Because transgender issues are on the agenda of many facility managers we direct you to Page 1424 of the rather large document linked above.

As always, we persist in encouraging education industry facility managers (especially those with operations and maintenance data) to participate in the ICC code development process.  You may do so by CLICKING HERE.

Real asset managers for school districts, colleges, universities and technical schools in the Las Vegas region should take advantage of the opportunity to observe the ICC code-development process during the upcoming ICC Annual Conference in Las Vegas, October 20-23 during which time the Group B c Public Comment Hearings will take place.  Even though the IPC has moved farther along the ICC code development process it is still enlightening to observe how it work.   The Group B Hearings are usually webcast — and we will signal the link to the webcast when it becomes available — but the experience of seeing how building codes are determined is enlightening when you can watch it live and on site.

Issue: [16-133]

Category: Plumbing, Water, Mechanical

Colleagues: Eric Albert, Richard Robben, Larry Spielvogel

#StandardsNewMexico

 


LEARN MORE:

Neutral Public Bathroom Design

International Energy Conservation Code

2024 International Energy Conservation Code (IECC) | April, May 2025

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

2024 GROUP A PROPOSED CHANGES TO THE I-CODES

Public Comment Period on the IECC

AIA Michigan Comment on ICC Code Development Process

National Electrical Manufacturers Association

Shouldn’t energy conservation measures be determined by market forces rather than building construction regulations? 

Energy codes in the United States are adopted and enforced at the state level, and the stringency of the energy codes can vary widely from state to state.  For example, as of September 2021, four states (Alabama, Mississippi, South Carolina, and West Virginia) had not adopted statewide energy codes at all, according to the Building Codes Assistance Project. Other states may have adopted energy codes but have not updated them to the latest version, which could be less stringent than more recent versions.

We do not spend too many resources challenging the zietgeist.  Engineers, by nature, seek to do more with less but it is worth reminding our colleagues that energy conservation practices vary widely around the globe and not every nation supports what amounts to an energy police state.

“The Conquest of Energy” / José Chávez Morado / Universidad Nacional Autónoma de México

The International Energy Conservation Code is a model building code developed by the International Code Council for incorporation by reference into state and local energy conservation legislation.  Free access to the current edition is linked below:

2021 International Energy Conservation Code

Sell Sheet: Leading the Way to Energy Efficiency

2024 International Energy Conservation Code Update: Appeals Deadline Extended

Apart from product prescriptive passages IECC is a largely a performance code which draws its inspiration from other energy-related catalogs developed by United States standards developers; notably ASHRAE International.  Several accessory titles supporting the current 2021 edition which address energy efficiency on several fronts including cost, energy usage, use of natural resources and the impact of energy usage on the environment are linked below:

Related Titles

Many of the ideas in play can be tracked in the transcripts linked below:

Complete Monograph: 2022 Group B Proposed Changes

Complete Monograph: 2022 Group B Public Comment Agenda

Note the pre-occupation with products such as insulation, fenestration, power outlets and lighting — reflecting the financial support of energy activists advocating on behalf of manufacturers who tend build the cost of their advocacy in the price of their product.

A commonly overlooked energy conservation measure is reducing standby power consumption, also known as “vampire power.” Many electronic devices, such as televisions, computers, and chargers, consume energy even when they are not actively being used but are still plugged in. This standby power can account for up to 10% of a building’s energy consumption.

While our focus tends to be on the commercial facility docket, we keep an eye on the residential docket because, a)  many colleges and universities own and operate square-footage on the periphery of their campuses that is classified as residential, b) many student rental houses are obviously classified as residential and we want property owners to be able to afford reasonable energy conservation measures for the houses they rent to students.*

From previous posts we explained we summarized our priorities for the Group B cycle and the IECC in particular:

  • Education facilities as storm shelters
  • Laboratory ventilation
  • Classroom lighting
  • Expansion of lighting controls
  • Expansion of receptacle controls
  • Expansion of electrical power system design requirements above beyond National Electrical Code minimums.

We encourage our colleagues in energy enterprises in education communities to participate directly in the ICC Code Development Process.*

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

The IECC is a standing item on our periodic Energy 200, Power, Mechanical and Hello World! colloquia.  See our CALENDAR for the next online meeting; open to everyone.

University of Michigan

Issue: [Various]

Category: Architectural, Facility Asset Management, Space Planning

Colleagues: Mike Anthony, Jim Harvey, Jack Janveja, Richard Robben, Larry Spielvogel


* More:

Consulting-Specifying Engineer (March 5, 2025): Why and how to adopt the IECC for energy-efficient designs

Stationary Energy Storage Systems

Should every campus building generate its own power? Sustainability workgroups are vulnerable to speculative hype about net-zero buildings and microgrids. We remind sustainability trendsniffers that the central feature of a distributed energy resource–the eyesore known as the university steam plant–delivers most of the economic benefit of a microgrid. [Comments on Second Draft due April 29th] #StandardsMassachusetts

“M. van Marum. Tweede vervolg der proefneemingen gedaan met Teyler’s electrizeer-machine, 1795” | An early energy storage device | Massachusetts Institute of Technology Libraries

We have been following the developmental trajectory of a new NFPA regulatory product — NFPA 855 Standard for the Installation of Stationary Energy Storage Systems — a document with ambitions to formalize the fire safety landscape of the central feature of campus microgrids by setting criteria for minimizing the hazards associated with energy storage systems.

The fire safety of electric vehicles and the companion storage units for solar and wind power systems has been elevated in recent years with incidents with high public visibility.  The education industry needs to contribute ideas and data to what we call the emergent #SmartCampus;an electrotechnical transformation — both as a provider of new knowledge and as a user of the new knowledge.

Transcripts of technical deliberation are linked below:

2026 Public Input Report (705 pages) § 2026 Second Draft Meeting Agenda (912 pages)

Comment on the 2026 revision received by March 27, 2025 will be heard at the NFPA June 2025 Expo through NFPA’s NITMAM process.

University of Michigan | Average daily electrical load across all Ann Arbor campuses is on the order of 100 megawatts

A fair question to ask: “How is NFPA 855 going to establish the standard of care any better than the standard of care discovered and promulgated in the NFPA 70-series and the often-paired documents NFPA 110 and NFPA 111?”  (As you read the transcript of the proceedings you can see the committee tip-toeing around prospective overlaps and conflicts; never a first choice).

Suffice to say, the NFPA Standards Council has due process requirements for new committee projects and, obviously, that criteria has been met.   Market demand presents an opportunity to assemble a new committee with fresh, with new voices funded by a fresh set of stakeholders who, because they are more accustomed to advocacy in open-source and consortia standards development platforms, might have not been involved in the  more rigorous standards development processes of ANSI accredited standards developing organizations — specifically the NFPA, whose members are usually found at the top of organization charts in state and local jurisdictions.  For example we find UBER — the ride sharing company — on the technical committee.  We find another voice from Tesla Motors.  These companies are centered in an industry that does not have the tradition of leading practice discovery and promulgation that the building industry has had for the better part of two hundred years.

Our interest in this standard lies on both sides of the education industry — i.e. the academic research side and the business side.  For all practical purposes, the most credible, multi-dimensional and effective voice for lowering #TotalCostofOwnership for the emergent smart campus is found in the tenure of Standards Michigan and its collaboration with IEEE Education & Healthcare Facilities Committee (E&H).  You may join us sorting through the technical, economic and legal particulars and day at 11 AM Eastern time.   The IEEE E&H Committee meets online every other Tuesday in European and American time zones; the next meeting on March 26th.  All meetings are open to the public.

University of California San Diego Microgrid

You are encouraged to communicate directly with Brian O’Connor, the NFPA Staff Liaison for specific questions.  We have some of the answers but Brian is likely to have all of them.   CLICK HERE for the NFPA Directory.  Additionally, NFPA will be hosting its Annual Conference & Expo, June 17-20 in San Antonio, Texas; usually an auspicious time for meeting NFPA staff working on this, and other projects.

The prospect of installing of energy storage technologies at every campus building — or groups of buildings, or in regions — is clearly transformational if the education facilities industry somehow manages to find a way to drive the cost of operating and maintaining many energy storage technologies lower than the cost of operating and maintaining a single campus distributed energy resource.  The education facility industry will have to train a new cadre of microgrid technology specialists who must be comfortable working at ampere and voltage ranges on both sides of the decimal point that separates power engineers from control engineers.  And, of course, dynamic utility pricing (set by state regulatory agencies) will continue to be the most significant independent control variable.

Finding a way to make all this hang together is the legitimate work of the academic research side of the university.   We find that sustainability workgroups (and elected governing bodies) in the education industry are vulnerable to out-sized claims about microgrids and distributed energy resources; both trendy terms of art for the electrotechnical transformation we call the emergent #SmartCampus.

We remind sustainability trendsniffers that the central feature of a distributed energy resource — the eyesore known as the university steam plant — bears most of the characteristics of a microgrid.   In the videoclip linked below a respected voice from Ohio State University provides enlightenment on this point; even as he contributes to the discovery stream with a study unit.

Ohio State University McCracken Power Plant

Issue: [16-131]

Category:  District Energy, Electrical, Energy, Facility Asset Management, Fire Safety, Risk Management, #SmartCampus, US Department of Energy

Colleagues: Mike Anthony, Bill Cantor ([email protected]). Mahesh Illindala

Standards MassachusettsStandards Texas, Standards Ohio

*It is noteworthy that (NFPA 70) National Electrical Code-Making Panel 1 has appropriated vehicle-to-grid installations into its scope.

 


Princeton University Power Plant | Click on image

LEARN MORE:

Related Post: Electrical Safety Research Advisory Committee

Bibiography: Campus Microgrids

Higher Education Facilities Conference: The Rise of University Microgrids

 


Mahesh Illindala enlightens understanding of what microgrid is, and is not:


Colloquy (April)

Gallery: Doctoral Dissertations

About

American School and University: Northern Kentucky University plans to expand its main science research building


Building Structural Maintenance

This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content