Tag Archives: D2

Loading
loading..

Electrical installations and Protection Against Electric Shock

“View of Lake Geneva” 1881 Gustave Courbet

Technical Committee 64 develops the International Electrotechnical Commission consensus product that covers similar territory for the global electrical power industry as NFPA 70 (National Electrical Code).   Keep in mind that the safety traditions of the NFPA suite of consensus products are inspired by fire safety considerations.   IEC 60363 Electrical installations and protection against electric shock — the parent document that applies to the wiring systems of education and healthcare facilities — was inspired from voltage safety.

TC 64 Strategic Business Plan

The scope of IEC 60364 is reproduced below:

– concerning protection against electric shock arising from equipment, from installations and from systems without limit of voltage,
– for the design, erection foreseeable correct use and verification of all kind of electrical installations at supply voltage up to 1 kV a.c or 1,5 kV d.c., except those installations covered by the following IEC committees: TC 9, TC 18, TC 44, TC 97, TC99
– in co-ordination with TC 99, concerning requirements additional to those of TC 99 for the design, erection and verification of electrical installations of buildings above 1kV up to 35kV.

The object of the standards shall be:
– to lay down requirements for installation and co-ordination of electrical equipment
– to lay down basic safety requirements for protection against electric shock for use by technical committees
– to lay down safety requirements for protection against other hazards arising from the use of electricity
– to give general guidance to IEC member countries that may have need of such requirements
– and to facilitate international exchanges that may be hampered by differences in national regulations.

The standards will not cover individual items of electrical equipment other than their selection for use. Safety Pilot Function: Protection against electric shock.

IEC Preview 60364-1

KUPDF Commentary on 60364 and comparisons with NFPA 70 National Electrical Code

Since neither the USNA National Committee to the IEC (USNA/IEC), nor the US Technical Advisory Administrator (National Electrical Manufacturers Association) has a workspace set up for responding to IEC 60364 calls for public comment, we set one up for ourselves several years ago for education facility and electrical engineering faculty and students:

IEC | USNA IEC Workspace | Updated 12 June 2023

Note that anyone in the world is welcomed to comment upon IEC documents, contingent upon obtaining (free) login credentials.  To review the the strike-and-bold you will need login credentials.   Alternatively, you may click in to the 4-times monthly teleconferences of the IEEE Education & Healthcare Facilities Committee.  See our CALENDAR for the next online meeting.

Colleagues: Mike Anthony, Jim Harvey, Massimo Mittolo, Giuseppe Parise

International Electrotechnical Commission – Central Office – Geneva

Elettrotecnico Lingua Franca

Designing Lighting for People and Buildings

“Electrical Building World’s Columbian Exposition Chicago 1892

Today we feature the catalog of the Illumination Engineering Society — one of the first names in standards-setting in illumination technology, globally* with particular interest in its leading title IES LP-1 | LIGHT + DESIGN Lighting Practice: Designing Quality Lighting for People and Buildings.

From its prospectus:

“…LIGHT + DESIGN was developed to introduce architects, lighting designers, design engineers, interior designers, and other lighting professionals to the principles of quality lighting design. These principles; related to visual performance, energy, and economics; and aesthetics; can be applied to a wide range of interior and exterior spaces to aid designers in providing high-quality lighting to their projects.

Stakeholders: Architects, interior designers, lighting practitioners, building owners/operators, engineers, the general public, luminaire manufacturers.  This standard focuses on design principles and defines key technical terms and includes technical background to aid understanding for the designer as well as the client about the quality of the lighted environment. Quality lighting enhances our ability to see and interpret the world around us, supporting our sense of well-being, and improving our capability to communicate with each other….”


The entire catalog is linked below:

IES Lighting Library

Illumination technologies run about 30 percent of the energy load in a building and require significant human resources at the workpoint — facility managers, shop foremen, front-line operations and maintenance personnel, design engineers and sustainability specialists.  The IES has one of the easier platforms for user-interest participation:

IES Standards Open for Public Review

Because the number of electrotechnology standards run in the thousands and are in continual motion* we need an estimate of user-interest in any title before we formally request a redline because the cost of obtaining one in time to make meaningful contributions will run into hundreds of US dollars; apart from the cost of obtaining a current copy.

We maintain the IES catalog on the standing agendas of our Electrical, Illumination and Energy colloquia.   Additionally, we collaborate with experts active in the IEEE Education & Healthcare Facilities Committee which meets online 4 times monthly in European and American time zones; all colloquia online and open to everyone.   Use the login credentials at the upper right of our home page to join us.

Issue: [Various}

Category: Electrical, Energy, Illumination, Facility Asset Management

Colleagues: Mike Anthony, Gary Fox, Jim Harvey, Kane Howard, Glenn Keates, Daleep Mohla, Giuseppe Parise, Georges Zissis

Brownian Motion” comes to mind because of the speed and interdependencies.

Season of Light Illumination Standards

 


LEARN MORE:

 

Interdependent Water & Electricity Networks

Joint Operation Optimization of the Interdependent Water and Electricity Networks

Mohannad Alhazmi – Payman Dehghanian – Mostafa Nazemi

George Washington University

Massimo Mitolo

The Irvine Valley College

 

Abstract:  With the rapid deployment of smart technologies and the growing complexity in our modern society, there is a huge demand for coordination in day-to-day operation of the critical infrastructure networks. The coordination between water and electricity networks particularly stands out and is urgently demanding as (i) water system is one of the most energy-intensive critical infrastructure, and (ii) water unavailability, if experienced, swiftly translates into a health, safety, and national security concern. This paper proposes a comprehensive day-ahead optimization framework for joint operation of the interdependent power and water systems. Different from the conventional paradigms where the power and water systems are independently and individually operated by their respective operators, the proposed optimization framework integrates the Optimal Power Flow (OPF) models in power grids with innovative models of the water distribution systems. The nonlinear hydraulic operating constraints in the proposed optimization models are linearized, resulting into a mixed-integer linear programming (MILP) model formulation. The proposed framework is applied to three 15-node water distribution systems, operated within the IEEE 9-bus test system. The simulation results demonstrate a significant cost saving that will be achieved when the proposed approach is applied for joint operation of power and water networks.

Irvine Valley College California

 

CLICK HERE to order complete paper

2023 National Electrical Safety Code

 

 

Survey on the Paradigm Shift to Microgrids

Decentralized, Democratized, and Decarbonized Future Electric Power Distribution Grids: A Survey on the Paradigm Shift From the Conventional Power System to Micro Grid Structures

 

Decentralized, Democratized, and Decarbonized Future Electric Power Distribution Grids: A Survey on the Paradigm Shift From the Conventional Power System to Micro Grid Structures

A BIM-Based Coordination Support System for Emergency Response

A BIM-Based Coordination Support System for Emergency Response

Yanxiao Feng, et. al

Department of Architectural Engineering, The Pennsylvania State University

Abstract: In fire emergencies, timely communication with on-site coordinators and accurate localization of first responders facilitates effective task assignment and resource allocation in harsh, low-visibility environments. Building information modeling (BIM) is widely accepted in the architecture, engineering, and construction industries as a central repository of building information. It could provide both the geometric building data and semantic information; however, the convenient linkage and integration with indoor location technologies for emergency purposes have not been addressed according to the authors’ knowledge.

A stand-alone BIM-based indoor location (BIMIL) framework and portal were designed and tested to enable the automatic extraction, transformation, and visualization of BIM-related data for public safety purposes in this study. Based on current information technology, this research reduces the gap in cross-application by supporting indoor location to overcome the primary shortcoming of existing indoor building models. Eliminating the need for specific software and skill in data processing, this portal will support on-site coordinators’ importation of BIM files, allowing them to convert those files into processed and visualized indoor information containing key yet simplified geometric building data and essential emergency-related information such as fire rating hours, egresses, and hazardous materials. Additionally, the indoor location data can be integrated into a generalized 3D building model to support decision-making activities and management tasks in the field.

Related:

International Fire Code

Life Safety Code

Means of Egress

Pathway Illumination

“Nighthawks” 1942 Edward Hopper

The Illumination Engineering Society is one of the first names in standards-setting organizations with a catalog routinely referenced in design guidelines and construction projects.  Because of the money flow into illumination technologies worldwide the IES occupies a domain that is relatively crowded:

  • National Electrical Manufacturers and Medical Imaging Association; whose interest lies in leveling the playing field for about 300 electrical equipment manufacturers
  • Institute for Electrical and Electronic Engineers; whose interest lies in the research activity in seeing sciences, the luminescence sources and the power chain
  • American Society of Heating and Refrigeration Engineers; whose interest lies in energy conservation
  • National Fire Protection Association; whose interest lies in fire safety of lighting systems within building premises.
  • International Code Council; whose interest lies in pulling together all of the relevant standards for lighting egress paths of the built environment
  • International Electrotechnical Commission; whose interest lies in the administration of global electrical and electronic technologies
  • International Commission on Illumination; the international authority on light, illumination, colour, and colour spaces

There are others.  With illumination power requirement on a downward trajectory where footcandles can be driven at information & communication technology voltage and current levels; we find relatively new entrants into the market with deep pockets and for good reason.  In a typical building, the interior lighting load is the major electrical load (on the order of 40 percent) and a major contributor to the functionality of the building.  There are a number of other trade associations that are participants in research and open source standards for faster moving parts of the illumination science.  We will cover these in future, related posts.

Last year a new standardization project was launched by the IES. From the project prospectus:

IES LP-2-201x, Designing Quality Lighting for People in Outdoor Environments (new standard)

Project Need: This document is not intended to supersede existing IES application RPs, rather it will link the various documents together, augmenting them in subject areas not otherwise covered, including but not limited to sidewalks, bikepaths, pedestrian paths, parks, outdoor malls, pedestrian-only business districts, plazas, amphitheaters, large outdoor gathering areas, campuses, pedestrian bridges, and pedestrian underpasses.

Stakeholders: Lighting practitioners, electrical engineers, civic planners, civil engineers, architects, community-based planning groups, general public.  Lighting recommendations for non-vehicular pedestrian applications using recommendations beyond illuminance only, which ultimately fails to provide a complete guideline for the visual experience of pedestrian-based tasks. The RP will be a comprehensive approach for light levels, glare, adaptation, spectrum, and contrast while addressing safety, timing, and perceived security. Application of these recommendations will ultimately enhance the pedestrian’s visual experience while also respecting the environment.

Soon to be released, a related product covering technical specifics of a familiar battleground — lighting controls:

IES LP-12 Lighting Practice: IoT Connected Lighting

The consultation closed May 24th and the agenda of the committee writing this standard is being administered.  Very often technical committees are receptive to new ideas after a comment deadline if those ideas are submitted to a committee member directly.   We invite anyone with an interest in this topic to click in to any of our daily colloquia to begin that process.

Not far into the future: individually controlled luminaires responsive to the use of campus pathways.  There are already some pilot projects on higher education campuses.

IES Standards in Public Review

A few other technical committees relevant to educational communities should be identified, though we will sort through the standards setting activity in separate posts:

Edu-Lib-Ofc Lighting Committee

Outdoor Environmental Lighting Committee

Outdoor Public Spaces Committee

Roadway Lighting Committee  (Many large research universities own miles of roads)

We always encourage direct participation by space planners, workpoint experts and academic unit facility managers in IES standards development process.  Contact: Patricia McGillicuddy, (917) 913-0027, pmcgillicuddy@ies.org. 120 Wall Street, Floor 17, New York, NY.

We  coordinate most of our electrotechnology standards advocacy with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in European and American time zones.  Its meeting agendas and login credentials are available on its website.   Since illumination technologies are present in all spaces in education communities, IES consensus products will appear on the standing agenda of most disciplines.  See our CALENDAR.

Issue: [19-50]

Category: Electrical, Space Planning

Colleagues: Mike Anthony, Jim Harvey, Kane Howard, Glenn Keates, George Reiher

*We find that when the SSO has heavy manufacturer support, its standards development facility lies in the upper-quality tier.

Management of Assets in Power Systems

“Mount Fuji from Lake Yamanaka” Takahashi Shōtei (1871-1945) | Los Angeles County Museum of Art

The Japanese Standards Association is the Global Secretariat for a standardization project devoted to the discovery and promulgatation of common methods and guidelines for coordinated lifetime management of network assets in power systems to support good asset management.  In addition, this may include the development of new methods and guidelines required to keep pace with development of electrotechnologies excluding generation assets; covered by other IEC standards.

There has, and will continue to be significant investment in electricity assets which will require ongoing management to realise value for the organizations. In the last 5 years, there has been USD 718 billion investment for electricity, spending on electricity networks and storage continued, reaching an all-time high of USD 277 billion in 2016. In the United States (17% of the total) and Europe (13%), a growing share is going to the replacement of ageing transmission and distribution assets.  A more fully dimensioned backgrounder on the business environment that drives the market for this title is available in the link below:

IEC/TC 123 Strategic Business Plan

Begun in 2018, this is a relatively new project with three stabilized titles:

IEC 60050-693 ED1: Management of network assets in power systems – Terminology

IEC 63223-2 ED1: Management of network assets in power systems – Requirements

IEC TS 63224 ED1: Management of network assets in power systems – Practices and case studies

Electropedia: The World’s Online Electrotechnical Vocabulary

It is early in this project’s lifecycle; far too early to find it referenced in public safety and energy laws in the United States where it would affect #TotalCostofOwnership.   Where we should, we follow the lead of the USNC/IEC for the United States, while still mindful that many of our IEEE colleagues follow the lead of their own national standards body.

Because this project fills an obvious gap in good practice literature we maintain this project on our 4 times monthly electrotechnology colloquium that we co-host with the IEEE Education & Healthcare Facilities Committee.   See our CALENDAR for the next online meeting; open to everyone.

World Standards Day 2023 webinars on latest information technologies

The importance of functional safety | 2023-10-11  IEC Editorial Team

 

USNC/IEC Workspace

 

Data Center Operations & Maintenance

"One day ladies will take their computers for walks in the park and tell each other, "My little computer said such a funny thing this morning" - Alan Turing

Information and communications technology (ICT) is a fast-moving economic space in which a mix of consensus, consortia and open-source standards form the broad contours of leading practice.   ICT standards tend to follow international developments — more so than, say, fire safety standards which are more familiar to education facility leadership.  All school districts, colleges, universities and university-affiliated health care systems have significant product, system, firmware and labor resources allocated toward ICT.

The Building Industry Consulting Service International (BICSI) is a professional association supporting the advancement of the ICT community in all markets.   This community is roughly divided between experts who deal with “outside-plant” systems and “building premise” systems on either side of the ICT demarcation (or Point-of-Presence).   BICSI standards cover the wired and wireless spectrum of voice, data, electronic safety & security, project management and audio & video technologies.  Its work is divided among several committees as shown in the landing page of its standards setting enterprise, linked below:

BICSI International Standards Program

The stars on the map above indicate where BICSI Standards are currently in use (CLICK ON IMAGE).

Education communities are stewards of significant information and communication technology infrastructure.  Accordingly, we track the development of BICSI 009 Data Center Operations and Maintenance Best Practices.   This title provides requirements, recommendations, and best practices for the operation and maintenance of data centers including but not limited to standard operating procedures, emergency operating procedures, maintenance, governance, and management.  Those comments are now being integrated into a revised standard to be released as soon as the restrictions of the pandemic are eased.  For more information you may communicate directly with Jeff Silveira (jSilveira@bicsi.org)

As of this posting, all BICSI best practice titles are stable and current; though our recent communication with its leadership indicates that BICSI standards setting has been slowed by the pandemic.

A fair amount of content in BICSI standards are inspired by movement in safety concepts of the National Electrical Code; particularly on matters involving wiring, grounding and lightning protection.  We maintain all BICSI best practice titles on the standing agenda of our Infotech 200 teleconference.  See our CALENDAR for the next online meeting; open to the public.   On this topic we collaborate with the IEEE Education & Healthcare Facilities Committee meets four times monthly in European and American time zones; also open to the public.

 

Issue: [19-30]

Category: Telecommunications, Infotech

Colleagues: Mike Anthony, Jim Harvey, Michael Hiler

 


LEARN MORE:

 

Workspace / BICSI

 

 

 

 

 

 

International Swimming Pool and Spa Code

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content