Tag Archives: D3

Loading
loading..

Canadian Parliament Debate on Standards Incorporated by Reference

“The Jack Pine” | Tom Thomson (1916) | National Gallery of Canada

 

Originally posted January 2014

In these clips — selected from Canadian Parliamentary debate in 2013 — we observe three points of view about Incorporation by reference (IBR); a legislative drafting technique that is the act of including a second document within a main document by referencing the second document.

This technique makes an entire second (or referenced) document a part of the main document.  The consensus documents in which we advocate #TotalCostofOwnership concepts are incorporated by reference into legislation dealing with safety and sustainability at all levels of government.  This practice — which many consider a public-private partnership — is a more effective way of driving best practices for technology, and the management of technology, into regulated industries.

Parent legislation — such as the Higher Education Act of 1965, the Clean Air Act and the Energy Policy Act – almost always require intermediary bureaucracies to administer the specifics required to accomplish the broad goals of the legislation.  With the gathering pace of governments everywhere expanding their influence over larger parts of the technologies at the foundation of national economies; business and technology standards are needed to secure that influence.  These standards require competency in the application of political, technical and financial concepts; competencies that can only be afforded by incumbent interests who build the cost of their advocacy into the price of the product or service they sell to our industry.  Arguably, the expansion of government is a reflection of the success of incumbents in business and technical standards; particularly in the compliance and conformity industries.

About two years ago, the US debate on incorporation by reference has been taken to a new level with the recent statement released by the American Bar Association (ABA):

16-164-Incorporation-by-Reference-ABA-Resolution-and-Report

The American National Standards Institute responded to the ABA with a statement of its own.

16-164-ANSI-Response-to-ABA-IBR-06-16 (1)

The incorporation by reference policy dilemma has profound implications for how we safely and economically design, operate and maintain our “cities-within-cities” in a sustainable manner but, admittedly, the results are only visible in hindsight over a time horizon that often exceed the tenure of a typical college or university president.

A recent development — supporting the claims of ANSI and its accredited standards developers — is noteworthy:

The National Institute for Standards and Technology (NIST) manages a website — Standards.GOV — that is a single access point for consensus standards incorporated by reference into the Code of Federal Regulations: Standards Incorporated by Reference Database.   Note that this database does not include specific reference to safety and sustainability codes which are developed by standards setting organizations (such as NFPA, ICC, IEEE, ASHRAE and others) and usually incorporated by reference into individual state public safety and technology legislation.


LEARN MORE:

 

Critical Operations Power Systems

Disaster 500


The original University of Michigan codes and standards enterprise advocated actively in Article 708 Critical Operations Power Systems (COPS) of the National Electrical Code (NEC) because of the elevated likelihood that the education facility industry managed assets that were likely candidates for designation critical operations areas by emergency management authorities.

Because the NEC is incorporated by reference into most state and local electrical safety laws, it saw the possibility that some colleges and universities — particularly large research universities with independent power plants, telecommunications systems and large hospitals  — would be on the receiving end of an unfunded mandate.   Many education facilities are identified by the Federal Emergency Management Association as community storm shelters, for example.

As managers of publicly owned assets, University of Michigan Plant Operations had no objection to rising to the challenge of using publicly owned education facilities for emergency preparedness and disaster recovery operations; only that meeting the power system reliability requirements to the emergency management command centers would likely cost more than anyone imagined — especially at the University Hospital and the Public Safety Department facilities.  Budgets would have to be prepared to make critical operations power systems (COPS) resistant to fire and flood damages; for example.

Collaboration with the Institute of Electrical and Electronic Engineers Industrial Applications Society began shortly after the release of the 2007 NEC.  Engineering studies were undertaken, papers were published (see links below) and the inspiration for the IEEE Education & Healthcare Facilities Committee developed to provide a gathering place for power, telecommunication and energy professionals to discover and promulgate leading practice.   That committee is now formally a part of IEEE and collaborates with IAS/PES JTCC assigned the task of harmonizing NFPA and IEEE electrical safety and sustainability consensus documents (codes, standards, guidelines and recommended practices.

Transcripts of 2026 Revision:

Public Input Report CMP-13

Public Comment Report CMP-13


The transcript of NEC Code Making Panel 13 — the committee that revises COPS Article 708 every three years — is linked below:

NEC CMP-13 First Draft Balloting

NEC CMP-13 Second Draft Balloting

The 2023 Edition of the National Electrical Code does not contain revisions that affect #TotalCostofOwnership — only refinement of wiring installation practices when COPS are built integral to an existing building that will likely raise cost.  There are several dissenting comments to this effect and they all dissent because of cost.   Familiar battles over overcurrent coordination persist.

Our papers and proposals regarding Article 708 track a concern for power system reliability — and the lack of power  — as an inherent safety hazard.   These proposals are routinely rejected by incumbent stakeholders on NEC technical panels who do not agree that lack of power is a safety hazard.  Even if lack of power is not a safety hazard, reliability requirements do not belong in an electrical wiring installation code developed largely by electricians and fire safety inspectors.  The IEEE Education & Healthcare Facilities Committee (IEEE E&H) maintains a database on campus power outages; similar to the database used by the IEEE 1366 committees that develop reliability indices to enlighten public utility reliability regulations.

Public input on the 2026 revision to the NEC will be received until September 7th.  We have reserved a workspace for our priorities in the link below:

2026 National Electrical Code Workspace

Colleagues: Robert Arno, Neal Dowling, Jim Harvey

 

LEARN MORE:

IEEE | Critical Operations Power Systems: Improving Risk Assessment in Emergency Facilities with Reliability Engineering

Consuting-Specifying Engineer | Risk Assessments for Critical Operations Power Systems

Electrical Construction & Maintenance | Critical Operations Power Systems

International City County Management Association | Critical Operations Power Systems: Success of the Imagination

Facilities Manager | Critical Operations Power Systems: The Generator in Your Backyard

Electropedia: The World’s Online Electrotechnical Vocabulary

Public Consultations

Public consultation on joint ISO standard 80000 that defines quantities and units for space, time, thermodynamics, light, radiation and even the characteristic numbers for each of the foregoing closes October 11th.

“City at night” 1958 | Harald Rudyard Engman

Electropedia is produced by the world’s peak electrotechnical standardization organization that oversees 214 technical committees that provide a neutral and independent platform where agreement can be found on electrotechnical solutions with global relevance and reach.  The IEC operates close-coupled with the European Committee for Electrotechnical Standardization (CENELEC)

IEC 60050 International Electrotechnical Vocabulary (IEV) – Part 601: Generation, transmission and distribution of electricity | April 16

International Electrotechnical Commission | CDV Consultations

 

Elettrotecnico Lingua Franca

 

If you want to find the secrets of the universe, think in terms of energy, frequency and vibration. - Nikola Tesla

Global Positioning System: A Generation of Service to the World

Citizens of the Earth depend upon United States leadership in this technology for several reasons:

Development: The GPS was originally developed by the US Department of Defense for military purposes, but it was later made available for civilian use. The US has invested heavily in the development and maintenance of the system, which has contributed to its leadership in this area.

Coverage: The GPS provides global coverage, with 24 satellites orbiting the earth and transmitting signals that can be received by GPS receivers anywhere in the world. This level of coverage is unmatched by any other global navigation system.

Accuracy: The US has worked to continually improve the accuracy of the GPS, with current accuracy levels estimated at around 10 meters for civilian users and even higher accuracy for military users.

Innovation: The US has continued to innovate and expand the capabilities of the GPS over time, with newer versions of the system including features such as higher accuracy, improved anti-jamming capabilities, and the ability to operate in more challenging environments such as indoors or in urban canyons.

Collaboration: The US has collaborated with other countries to expand the reach and capabilities of the GPS, such as through the development of compatible navigation systems like the European Union’s Galileo system and Japan’s QZSS system.

United States leadership in the GPS has been driven by a combination of investment, innovation, collaboration, and a commitment to improving the accuracy and capabilities of the system over time.

Timing Applications: GPS.GOV

Suggested Functional Specifications for a GPS-Synchronized Clock System using Network Time Protocol and Power over Ethernet

Construction Specifications for Exterior Clocks

Seamless positioning system using GPS and beacons for community service robot

Global Positioning System: Monitoring the Fuel Consumption in Transport Distribution

Building Environment Design

I don’t build in order to have clients.

I have clients in order to build.

Ayn Rand

Google Data Center

 

“Détruire est facile ; construire est difficile.”

— Victor Hugo

 

The highest level of standardization for the building interiors on the emergent #SmartCampus originates in ISO TC 205 — Building Environment Design.  This committee is charged with standards setting in the design of new buildings and retrofit of existing buildings for acceptable indoor environment and practicable energy conservation and efficiency. Building environment design addresses the technical building systems and related architectural aspects, and includes the related design processes, design methods, design outcomes, and design-phase building commissioning. Indoor environment includes air quality, and thermal, acoustic, and visual factors.  The business plan is linked below:

STRATEGIC BUSINESS PLAN ISO/TC 205

Some of the key ideas in the scope of this project are listed below:

– the design of energy-efficient buildings
– building control systems design
– indoor air quality
– indoor thermal environment
– indoor acoustical environment
– indoor visual environment
– radiant heating and cooling systems
– heating and cooling systems
– building commissioning planning
– moisture in buildings

We see many of the foregoing ideas in the catalog of ASHRAE International — ANSI’s US Technical Advisory Group Administrator in this project, as well as a number of others (CLICK HERE).   There are 31 Participating member and 28 Observing member nations.

Generally speaking, ISO consensus products are performance standards and contrast sharply with prescriptive standards in the energy-related domains in the United States.  Prescriptive standards are easy to enforce but difficult to write.  Performance standards are easy to write but difficult to enforce.

Facility managers that oversee building automation units in education communities in the United States are encouraged to participate in the development of ISO 205 by communicating directly with Brian Cox at ASHRAE (bcox@ashrae.org).  We keep all ISO standards on the standing agenda of our periodic Global and AEdificare standards colloquia.  We also maintain this committee’s catalog on the standing agenda of our Mechanical colloquium.  See our CALENDAR for the next online meetings; open to everyone.

Issue: [10-30]

Category: International, Mechanical, Energy, Facility Asset Management

Colleagues: Mike Anthony, Richard Robben, Larry Spielvogel


More

Bygningsinformasjonsmodellering

 

System Aspects of Electrical Energy

IEC technical committees and subcommittees Ω SMB Tabulation

IEC and ITU offices | Geneva

Much economic activity in the global standards system involves products — not interoperability standards. Getting everything to work together — safely, cost effectively and simpler — is our raison d’etre.  

Manufacturers, testing laboratories, conformance authorities (whom we call vertical incumbents) are able to finance the cost of their advocacy — salaries, travel, lobbying, administration — into the cost of the product they sell to the end user (in our cases, estate managers in educational settlements).  To present products — most of which involve direct contact with a consumer — at a point of sale it must have a product certification label.  Not so with systems.  System certification requirements, if any, may originate in local public safety requirements; sometimes reaching into the occupational safety domain.

Our readings of the intent of this technical committee is to discover and promulgate best practice for “systems of products” — i.e. ideally interoperability characteristics throughout the full span of the system life cycle.

To quote Thomas Sowell:

“There are no absolute solutions to human problems, there are only tradeoffs.”  

Many problems have no solutions, only trade-offs in matters of degree.  We explain our lament over wicked problems in our About.

 

IEC technical committees and subcommittees


LEARN MORE:

 

If you want to find the secrets of the universe, think in terms of energy, frequency and vibration. - Nikola Tesla


ARCHIVE

The United States National Committee of  the International Electrotechnical Commission (USNA/IEC) seeks participants and an ANSI Technical Advisory Group (US TAG) Administrator for an IEC subcommittee (Multi-Agent System) developing standards for power system network management.   From the project prospectus:

Standardization in the field of network management in interconnected electric power systems with different time horizons including design, planning, market integration, operation and control.  SC 8C covers issues such as resilience, reliability, security, stability in transmission-level networks (generally with voltage 100kV or above) and also the impact of distribution level resources on the interconnected power system, e.g. conventional or aggregated Demand Side Resources (DSR) procured from markets.

SC 8C develops normative deliverables/guidelines/technical reports such as:

– Terms and definitions in area of network management,
– Guidelines for network design, planning, operation, control, and market integration
– Contingency criteria, classification, countermeasures, and controller response, as a basis of technical requirements for reliability, adequacy, security, stability and resilience analysis,
– Functional and technical requirements for network operation management systems, stability control systems, etc.
– Technical profiling of reserve products from DSRs for effective market integration.
– Technical requirements of wide-area operation, such as balancing reserve sharing, emergency power wheeling.

Individuals who are interested in becoming a participant or the TAG Administrator for SC 8C: Network Management are invited to contact Adelana Gladstein at agladstein@ansi.org as soon as possible.

This opportunity, dealing with the system aspects of electrical energy supply (IEC TC 8), should at least interest electrical engineering research faculty and students involved in power security issues.   Participation would not only provide students with a front-row seat in power system integration but faculty can collaborate and compete (for research money) from the platform TC 8 administers.  We will refer it to the IEEE Education & Healthcare Facilities Committee which meets online 4 times monthly in European and American time zones.

Cambridge Center for Smart Infrastructure & Construction

“No village or individual shall be compelled to make bridges at river banks,

except those who from of old are legally bound to do so.”

— Magna Cara Clause 23 (Limiting forced labor for infrastructure) 

“Clare Hall and King’s College Chapel, Cambridge, from the Banks of the River Cam” / Joseph Mallord William Turner (1793)

 

Smart Infrastructure: Getting More From Strategic Assets

Dr Jennifer Schooling, Director of CSIC

Dr Ajith Parlikad, CSIC Co-Investigator and Senior Lecturer

Mark Enzer, Global Water Sector Leader

Mott MacDonald; Keith Bowers, Principal Tunnel Engineer, London Underground

Ross Dentten, Asset Information and Configuration Manager, Crossrail

Matt Edwards, Asset Maintenance and Information Manager, Anglian Water Services

Jerry England, Group Digital Railway Director, Network Rail

Volker Buscher, Director, Arup Digital

 

Smart Infrastructure is a global opportunity worth £2trn-4.8trn. The world is experiencing a fourth industrial revolution due to the rapid development of technologies and digital abundance.

Smart Infrastructure involves applying this to economic infrastructure for the benefit of all stakeholders. It will allow owners and operators to get more out of what they already have, increasing capacity, efficiency and resilience and improving services.

It brings better performance at lower cost. Gaining more from existing assets is the key to enhancing service provision despite constrained finance and growing resource scarcity. It will often be more cost-effective to add to the overall value of mature infrastructure via digital enhancements than by physical enhancements – physical enhancements add `more of the same’, whereas digital enhancements can transform the existing as well.

Smart Infrastructure will shape a better future. Greater understanding of the performance of our infrastructure will allow new infrastructure to be designed and delivered more efficiently and to provide better whole-life value.

Data is the key – the ownership of it and the ability to understand and act on it. Industry, organisations and professionals need to be ready to adjust in order to take advantage of the emerging opportunities. Early adopters stand to gain the most benefit. Everyone in the infrastructure sector has a choice as to how fast they respond to the changes that Smart Infrastructure will bring. But everyone will be affected.

Change is inevitable. Progress is optional. Now is the time for the infrastructure industry to choose to be Smart.

 

LEARN MORE:

Cambridge Centre for Smart Infrastructure and Construction


Perspective: Since this paper is general in its recommendations, we provide examples of specific campus infrastructure data points that are difficult, if not impossible, to identify and “make smart” — either willfully, for lack of funding, for lack of consensus, for lack of understanding or leadership:

    1. Maintenance of the digital location of fire dampers in legacy buildings or even new buildings mapped with BIM.  Doors and ceiling plenums are continually being modified and the As-Built information is usually not accurate.  This leads to fire hazard and complicates air flow and assuring occupant temperature preferences (i.e. uncontrollable hot and cold spots) 
    2. Ampere readings of feeder breakers downstream from the electric service main.  The power chain between the service substation and the end-use equipment is a “no-man’s land” in research facilities that everyone wants to meter but few ever recover the cost of the additional metering.
    3. Optimal air flow rates in hospitals and commercial kitchens that satisfies both environmental air hazards and compartmentalized air pressure zones for fire safety.
    4. Identification of students, staff and faculty directly affiliated with the campus versus visitors to the campus.
    5. Standpipe pressure variations in municipal water systems
    6. Pinch points in municipal sewer systems in order to avoid building flooding.
    7. How much of university data center cost should be a shared (gateway) cost, and how much should be charged to individual academic and business units?
    8. Should “net-zero” energy buildings be charged for power generated at the university central heating and electric generation plant?
    9. How much staff parking should be allocated to academic faculty versus staff that supports the healthcare delivery enterprises; which in many cases provides more revenue to the university than the academic units?
    10. Finally, a classical conundrum in facility management spreadsheets: Can we distinguish between maintenance cost (which should be covered under an O&M budget) and capital improvement cost (which can be financed by investors)

 

 

Gallery: Great Lakes

The Great Lakes contain enough fresh water to cover the land area of the entire United States under 3 meters of water.

We collect 15 video presentations about Great Lake water safety and sustainability prepared by the 8 Great Lake border state colleges and universities and their national and international partners in Canada.

Tour Around Lake Superior

 

 

Water 100


When the wicked problems of peace and economic inequality cannot be solved, political leaders, and the battalions of servile administrative muckety-mucks who report to them, resort to fear-mongering about an imagined problem to be solved centuries hence assuming every other nation agrees on remedies of its anthropogenic origin.  We would not draw attention to it were it not that large tranches of the global academic community are in on the grift costing hundreds of billions in square-footage for research and teaching hopelessness to our children and hatred of climate change deniers.

Before the internet is scrubbed of information contrary to climate change mania, we recommend a few titles:

“Gulliver’s Travels” Jonathan Swift | Start at Chapter 5, PDF page 235

The Mad, Mad, Mad World of Climatism: Mankind and Climate Change Mania

Climate Change Craziness Exposed: Twenty-One Climate Change Denials of Environmentalists

Climate Psychosis

Gallery: Other Ways of Knowing Climate Change

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content