History of the English Speaking Peoples

Loading
loading...

History of the English Speaking Peoples

June 9, 2025
mike@standardsmichigan.com
, , , , ,
No Comments

Michigan Central

Since so much of what we do in standards setting is built upon a foundation of a shared understanding and agreement of the meaning of words (no less so than in technical standard setting) that time is well spent reflecting upon the origin of the nouns and verbs of that we use every day.   Best practice cannot be discovered, much less promulgated, without its understanding secured with common language.

Word Counts

2024 Alumni Awards

Cambridge: English language education in the era of generative AI

LLM Model Evaluation & Agent Interface

June 9, 2025
mike@standardsmichigan.com
No Comments

IEEE sponsors two AI and ADS projects that follow ANSI standardization requirements:

Title: IEEE P3119 – Standard for the Procurement of Artificial Intelligence and Automated Decision Systems

Scope: The IEEE P3119 standard establishes a uniform set of definitions and a process model for procuring Artificial Intelligence (AI) and Automated Decision Systems (ADS). It covers government procurement, in-house development, and hybrid public-private development of AI/ADS. The standard redefines traditional procurement stages—problem definition, planning, solicitation, critical evaluation (e.g., impact assessments), and contract execution—using an IEEE Ethically Aligned Design (EAD) foundation and a participatory approach to address socio-technical and responsible innovation considerations. It focuses on mitigating unique AI risks compared to traditional technologies and applies to commercial AI products and services procured through formal contracts.

Purpose: The purpose of IEEE P3119 is to help government entities, policymakers, and technologists make transparent, accountable, and responsible choices in procuring AI/ADS. It provides a framework to strengthen procurement processes, ensuring due diligence, transparency about risks, and alignment with public interest. The standard aims to minimize AI-related risks (e.g., bias, ethical concerns) while maximizing benefits, complementing existing procurement practices and shaping the market for responsible AI solutions. It supports agencies in critically evaluating AI tools, assessing vendor transparency, and integrating ethical considerations into procurement.

Developmental Timelines:

    • September 23, 2021: The IEEE Standards Association (SA) Standards Board approved the project and established the IEEE P3119 Working Group. The Project Authorization Request (PAR) was created to define the scope.
    • 2021–Ongoing: Development continues, with no final publication date confirmed in available sources. As of July 18, 2024, the standard was still in progress, focusing on detailed process recommendations.
    • The standard is being developed as a voluntary socio-technical standard, with plans to test it against existing regulations (e.g., via regulatory sandboxes).

By Whom:

    • Working Group Chair: Gisele Waters, Ph.D., Director of Service Development and Operations at Design Run Group, co-founder of the AI Procurement Lab, and a human-centered design researcher focused on risk mitigation for vulnerable populations.
    • Working Group Vice Chair: Cari Miller, co-founder of the AI Procurement Lab and the Center for Inclusive Change, an AI governance leader and risk expert.
    • IEEE P3119 Working Group: Comprises a global network of IEEE SA volunteers from diverse industries, collaborating to develop standards addressing market needs and societal benefits. The group integrates expertise from government workers, policymakers, and technologists.
    • Inspiration: The standard was inspired by the AI and Procurement: A Primer report from the New York University Center for Responsible AI.

The IEEE P3119 standard is a collaborative effort to address the unique challenges of AI procurement, emphasizing ethical and responsible innovation for public benefit

Title: IEEE P3120 – Standard for Quantum Computing Architecture

Scope: The IEEE P3120 standard defines a general architecture for quantum computers, focusing on the structure and organization of quantum computing systems. It covers the overall system architecture, including quantum hardware components (e.g., qubits, quantum gates), control systems, interfaces with classical computing systems, and software layers for programming and operation. The standard aims to provide a framework for designing interoperable and scalable quantum computing systems, addressing both hardware and software considerations for quantum and hybrid quantum-classical architectures.

Purpose: The purpose of IEEE P3120 is to establish a standardized framework to guide the design, development, and integration of quantum computing systems. It seeks to ensure consistency, interoperability, and scalability across quantum computing platforms, facilitating innovation and collaboration in the quantum computing ecosystem. By providing clear architectural guidelines, the standard supports developers, researchers, and industry stakeholders in building reliable and efficient quantum computers, bridging the gap between theoretical quantum computing and practical implementation.

Developmental Timelines:

    • September 21, 2023: The IEEE Standards Association (SA) Standards Board approved the Project Authorization Request (PAR) for P3120, initiating the project under the IEEE Computer Society’s Microprocessor Standards Committee (C/MSC).
    • 2023–Ongoing: Development is in progress, with no confirmed publication date in available sources. As a standards development project, it involves iterative drafting, review, and consensus-building, typical of IEEE processes, which can span several years.
    • The standard is being developed as a voluntary standard, with potential for testing and refinement through industry and academic collaboration.

By Whom:

    • Sponsor: IEEE Computer Society, specifically the Microprocessor Standards Committee (C/MSC), which oversees standards related to microprocessor and computing architectures.
    • Working Group: The IEEE P3120 Working Group consists of volunteers from academia, industry, and research institutions with expertise in quantum computing, computer architecture, and related fields. Specific chairs or members are not detailed in available sources, but IEEE SA working groups typically include global experts from relevant domains.
    • Stakeholders: The development involves contributions from quantum computing researchers, hardware manufacturers, software developers, and standardization experts to ensure a comprehensive and practical standard.

The IEEE P3120 standard is a critical step toward formalizing quantum computing architectures, aiming to support the growing quantum technology industry with a robust and interoperable framework.

 

Places of Worship

June 8, 2025
mike@standardsmichigan.com
,
No Comments

“The Church is not a gallery for the exhibition of eminent Christians,

but a school for the education of imperfect ones.”

— Henry Ward Beecher

WEBCAST Committee Action Hearings, Group A #2

 

2024 International Building Code: Chapter 3 Occupancy Classification and Use

In the International Code Council catalog of best practice literature we find the first principles for safety in places of worship tracking in the following sections of the International Building Code (IBC):

Section 303 Assembly Group A

“303.1.4:  Accessory religious educational rooms and religious auditoriums with occupant loads less than 100 per room or space are not considered separate occupancies.”   This informs how fire protection systems are designed.

Section 305 Educational Group E

“305.2.1: Rooms and spaces within places of worship proving such day care during religious functions shall be classified as part of the primary occupancy.”  This group includes building and structures or portions thereof occupied by more than five children older than 2-1/2 years of age who receive educational, supervision or personal care services for fewer than 24 hours per day.

Section 308 Institutional Group I

“308.5.2: Rooms and spaces within places of religious worship providing [Group I-4 Day Care Facilities] during religious functions shall be classified as part of the primary occupancy.   When [Group I-4 Day Care Facilities] includes buildings and structures occupied by more than five persons of any age who receive custodial care for fewer than 24 hours per day by persons other than parents or guardians, relatives by blood, marriage or adoption, and in a place other than the home of the person cared for.

Tricky stuff — and we haven’t even included conditions under which university-affiliated places of worship may expected to be used as community storm shelters.

"This We'll Defend."

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

Public response to Committee Actions taken in Orlando in April will be received until July 8th.

Because standard development tends to be a backward-looking domain it is enlightening to understand the concepts in play in previous editions.  The complete monograph of proposals for new building safety concepts for places of worship for the current revision cycle is linked below:

 2021/2022 Code Development: Group B

A simple search on the word “worship” will reveal what ideas are in play.  With the Group B Public Comment Hearings now complete ICC administered committees are now curating the results for the Online Governmental Consensus Vote milestone in the ICC process that was completed December 6th.   Status reports are linked below:

2018/2019 Code Development: Group B

Note that a number of proposals that passed the governmental vote are being challenged by a number of stakeholders in a follow-on appeals process:

2019 Group B Appeals

A quick review of the appeals statements reveals some concern over process, administration and technical matters but none of them directly affect how leading practice for places of worship is asserted.

We are happy to get down in the weeds with facility professionals on other technical issues regarding other occupancy classes that are present in educational communities.   See our CALENDAR for next Construction (Ædificare) colloquium open to everyone.

Issue: [17-353]

Category: Chapels

Colleagues: Mike Anthony, Jack Janveja, Richard Robben, Larry Spielvogel


More

Fashion Technology

June 6, 2025
mike@standardsmichigan.com
, , ,
No Comments

Art presents a different way of looking at things than science; 

one which preserves the mystery of things without undoing the mystery.

Sir Roger Scruton


Garment Industry Standards

Gallery: School Uniforms

Textiles

Art, Design & Fashion Studios

Gallery: Graduation Commencement Speeches

June 6, 2025
mike@standardsmichigan.com
, , , , , , , ,
No Comments

“It is at leaving the college and entering the world that the education of youth begins…

It is less uniform than that of childhood but more dependent on chance, and doubtless more important.

The youth is then attacked by a greater number of sensations: all that surrounds him strikes him,

and strikes him forcibly.”

—  Claude-Adrien Helvétius (A Treatise on Man)

 

Constructor University (formerly, Jacobs University Bremen Germany) Graduation Band: “Freebird”

Intercollegiate Studies Institute | What Makes the West Strong (Sir Roger Scruton)

Art, Design & Fashion Studios

June 6, 2025
mike@standardsmichigan.com
,
No Comments

Art presents a different way of looking at things than science; 

one which preserves the mystery of things without undoing the mystery.

Sir Roger Scruton

 

 

NFPA 1 Second Draft Meeting (A2026) June 2 – 3, 2025

“Interior de Ateliê” 1898 Rafael Frederico

We are guided by four interdependent titles that set the standard of care for safety and sustainability of occupancies supporting the fine arts in education communities.

(1)  Chapter 43: Spraying, Dipping and Coating Using Flammable or Combustible Material of NFPA 1: Fire Code.   As a “code” the public has free access to the current 2021 Edition , and Chapter 43 at the link below:

NFPA 1 Fire Code / Chapter 43 Spraying, Dipping and Coating Using Flammable or Combustible Materials

You get a sense of the back-and-forth among the technical committee members from the transcripts of committee activity linked below:

First Revisions Report (282 pages)

Our interest lies in fire safety provisions for educational occupancies with activity involving paint, chemicals used with paint (art studios) and Class III combustible materials (garment design & prototyping).

(2) NFPA also has another title — NFPA 33 Standard for Spray Application Using Flammable or Combustible Materials — provides more detail for instructional and facility maintenance operations activity.

(3) NFPA 101 Life Safety Code, much of which is derived from NFPA 1 (See: “How the Fire Code and Life Safety Code Work Together“)

(4) Finally, the International Code Council develops a competitor title — 2021 International Fire Code — which also provides fire safety standards for art, design and fashion studio safety.  The IFC is developed in the Group A tranche of titles:

2021/2022 Code Development Group A

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

We encourage direct participation by education industry user-interests in the ICC and the NFPA code development process.  A user interest in education community would have a job title similar to the following: Principal, Dean, President, Chief of Business Operations, Facility Manager, Trade Shop Foreman.

Harvard University

We maintain all four titles identified in this post on the standing agenda of our Prometheus (fire safety) and Fine Arts colloquia.   See our CALENDAR for the next online meeting; open to everyone.

Issue: [10-31] [16-64]

Category: Fire Safety

Colleagues: Mike Anthony, Josh Evolve, Marcelo Hirschler


More

Northeastern University: Safety Guide for Art Studios

Princeton University: Art Safety

University of Chicago Art Studio Safety Policy

 

Smørrebrød

June 5, 2025
mike@standardsmichigan.com
No Comments

Dedication

 


Danmark

Water 330

June 5, 2025
jia
No Comments

“At the Water Trough” 1876 J. Alden Weir

 

“A flood is nature’s way of telling you

that you live in the wrong place.”

— Some guy

 

Water standards make up a large catalog and it will take most of 2023 to untangle the titles, the topics, proposals, rebuttals and resolutions.  When you read our claim that since 1993 we have created a new academic discipline we would present the best practice literature of the world’s most abundance as an example.

The Water 100 session takes an aerial view of relevant standards developers, their catalogs and revision schedules.

The Water 200 session we examine the literature for best practice inside buildings; premise water supply for food preparation, sanitation and energy systems.

The Water 300 session we examine water management standards in selected nations with specific interest in educational settlements with proximity to oceans.

The Water 330 session we examine water management standards for swimming pools, hot tubs and spas in hospitals and athletic departments.

ANSI/APSP/ICC-11 2019 Water Quality in Public Pools and Spas

NSF International Water Standard Catalog

The Water 400 session will run through best practice catalogs of water management outside buildings, including interaction with regional water management systems.

The Water 500 session is a study of case histories, disasters, legal action related to non-conformance.  Innovation.


Water safety and sustainability standards have been on the Standards Michigan agenda since the early 2000’s.  Some of the concepts we have tracked over the years; and contributed data, comments and proposals to technical committees, are listed below:

  1. Legionella mitigation
  2. Swimming pool water quality
  3. Fire protection sprinkler water availability and safety
    – NFPA 70 Article 695 Fire Pumps
  4. Backflow prevention/Cross-connect systems
  5. Security of district energy power plant and hospital water supply
  6. Electrical shock protection in pools, fountains, spas and waterfront recreational docking facilities
  7. Rainwater catchment
  8. Water in extreme weather events
  9. Flood abatement systems
  10. Building plumbing codes (ICC and IAPMO)
  11. Water Re-use
  12. Water heaters
  13. District energy water treatment
  14. Food service steam tables
  15. Greywater
  16.  Residence hall potable water systems
  17. Water use in emergency shower and eyewash installations
  18. Decorative fountains.
  19. Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems

40 CFR § 141.92 – Monitoring for lead in schools and child care facilities

Since 2016 we have tracked other water-related issues:

  1. Safe water in playgrounds
  2. National Seagrant College programs
  3. Guide to Infection Control in the Healthcare Setting
  4. Electrical safety around water (cooling towers, swimming pools, spas)
  5. ASTM Water Testing Standards
  6. ASTM Standard for Water Distribution
  7. Electricity and Water Conservation on College and University Campuses in Response to National Competitions among Dormitories: Quantifying Relationships between Behavior, Conservation Strategies and Psychological Metrics

Relevant federal legislation:

  1. Clean Water Act
  2. Drinking Water Requirements for States and Public Water Systems
  3. Resource Conservation and Recovery Act
  4. Safe Drinking Water Act

Relevant Research:

Real Time Monitoring System of Drinking Water Quality Using Internet of Things

UNICON: An Open Dataset of Electricity, Gas and Water Consumption in a Large Multi-Campus University Setting

IoT based Domestic Water Recharge System

 

Send bella@standardsmichigan.com an email to request a more detailed advance agenda.   To join the conversation use the login credentials at the upper right of our home page.

More

IAPMO Publishes U.S., Canadian Standard for Detection, Monitoring, Control of Plumbing Systems

Standing Agenda / Water

Natatoriums 300: Advanced Topics

More

Solitude Lake Management for Universities and Colleges

There are several universities in the United States with campuses that have property frontage on an ocean:

  1. University of California, Santa Barbara (UCSB) – UCSB is located along the Pacific Ocean in Southern California.
  2. University of California, San Diego (UCSD) – UCSD is situated near the coast of the Pacific Ocean in La Jolla, California.
  3. University of Hawaii at Manoa – The main campus of the University of Hawaii is located on the island of Oahu and has oceanfront property.
  4. University of Miami – Located in Coral Gables, Florida, the University of Miami is situated on the Atlantic Ocean coast.
  5. University of Rhode Island – URI is located in Kingston, Rhode Island, and has oceanfront property along Narragansett Bay and the Atlantic Ocean.
  6. Florida Atlantic University – FAU has several campuses along the southeastern coast of Florida, with some campuses near the Atlantic Ocean.
  7. University of California, Santa Cruz (UCSC) – UCSC is located along the California coast, offering stunning views of the Pacific Ocean.
  8. Pepperdine University – Pepperdine’s main campus is located in Malibu, California, right along the Pacific Ocean.
  9. University of California, Irvine (UCI) – UCI is located in Orange County, California, and is close to the Pacific Ocean.
  10. University of Southern California (USC) – USC is located in Los Angeles, California, and is not far from the Pacific Ocean.

 

When anxious, uneasy and bad thoughts come, I go to the sea, and the sea drowns them out with its great wide sounds, cleanses me with its noise, and imposes a rhythm upon everthing in me that is bewildered and confused. - Rainer Maria Rilke

Swimming, Water Polo and Diving Lighting

June 5, 2025
mike@standardsmichigan.com
, , ,
No Comments

 

“In swimming, there are no referees, no foul lines,

no time-outs, and no substitutions.

It’s just you and the water.” – Unknown

 

 

https://standardsmichigan.com/australia/

There are several specific problems that swimming pool overhead lighting aims to solve:

  1. Visibility: Swimming pool overhead lighting is designed to improve visibility in and around the pool. This is important for safety reasons, as it helps swimmers see where they are going and avoid obstacles or hazards.
  2. Aesthetics: Overhead lighting can enhance the appearance of the swimming pool by creating a visually appealing atmosphere. This is especially important for commercial pools where the aesthetics can be an important factor in attracting customers.
  3. Functionality: Overhead lighting can provide additional functionality by allowing the pool to be used during evening hours or in low light conditions. This can increase the usability of the pool and make it more appealing to users.
  4. Energy efficiency: Modern overhead pool lighting solutions are designed to be energy-efficient, reducing the overall energy consumption and operating costs of the pool.
  5. Longevity: Overhead pool lighting must be designed to withstand exposure to water, chlorine, and other harsh chemicals, as well as exposure to the elements. The lighting system must be durable and reliable to ensure longevity and prevent costly repairs or replacements.

Overall, swimming pool overhead lighting is an important component of a safe, functional, and visually appealing pool. It provides illumination for visibility, enhances aesthetics, and improves functionality, while also being energy-efficient and durable.

After athletic arena life safety obligations are met (governed legally by NFPA 70, NFPA 101, NFPA 110,  the International Building Code and possibly other state adaptations of those consensus documents incorporated by reference into public safety law) business objective standards may come into play. For almost all athletic facilities,  the consensus documents of the Illumination Engineering Society[1], the Institute of Electrical and Electronic Engineers[2][3] provide the first principles for life safety.  For business purposes, the documents distributed by the National Collegiate Athletic Association inform the standard of care for individual athletic arenas so that swiftly moving media production companies have some consistency in power sources and illumination as they move from site to site.  Sometimes concepts to meet both life safety and business objectives merge.

During water sport season the document linked below provides information to illumination designers and facility managers:

NCAA Best Lighting Practices

Athletic programs are a significant source of revenue and form a large part of the foundation of the brand identity of most educational institutions in the United States.   We focus primarily upon the technology standards that govern the safety, performance and sustainability of these enterprises.  We collaborate very closely with the IEEE Education & Healthcare Facilities Committee where subject matter experts in electrical power systems meet 4 times each month in the Americas and Europe.

See our CALENDAR for our next colloquium on Sport facility codes and standards  We typically walk through the safety and sustainability concepts in play; identify commenting opportunities; and find user-interest “champions” on the technical committees who have a similar goal in lowering #TotalCostofOwnership.

Issue: [15-138]*

Category: Electrical, Architectural, Arts & Entertainment Facilities, Athletics

Colleagues: Mike Anthony, Jim Harvey, Jack Janveja, Jose Meijer, Scott Gibbs


More

Watersport Time Standards

Sport Lighting

Water Safety & Sustainability

June 5, 2025
mike@standardsmichigan.com

No Comments

AWWA COMMENT PERIOD ON AWWA G480, Water Conservation and Efficiency Program Operation and Management Closes June 23

Harvard University Art Museum | In the Sierras, Lake Tahoe | Albert Bierstadt

The American Water Works Association is one of the first names in accredited standards developers that administer leading practice discovery in backflow prevention consensus documents; usually referenced in local and state building codes; and also in education facility design guidelines and construction specifications.

The original University of Michigan standards enterprise gave highest priority to backflow standards because of their central importance of backflow management to education communities; especially large research universities nested within a municipal water system.  Backflow prevention; an unseen technology that assures a safe drinking water supply by keeping water running in one direction by maintaining pressure differences.  Analogous to the way we want electrical current to run in one direction, failure of backflow prevention technology poses a near-instantaneous health risk for the contamination of potable water supplies with foul water.  In the most obvious case, a toilet flush cistern and its water supply must be isolated from the toilet bowl.  In a less obvious case, but at greater scale, a damaged backflow prevention technology at a university research building can contaminate an host-community potable water supply.

There are other ANSI accredited standards developers in the backflow prevention technology space — the International Code Council, the IAPMO Group and ASSE International — for example.

Backflow Preventer

At the moment no AWWA redlines relevant to our objective are open for consultation.  Several relatively stabilized product standards are marked up but none dealing specifically with interoperability issues.  When they are uploaded you may access them at the link below:

AWWA Standards Public Comment Home Page

Students and Young Professionals

AWWA is the first name in US-based water standards so we maintain the AWWA catalog on our Plumbing & Water colloquia.   See our CALENDAR for the next online meeting; open to everyone.

Issue: [11-57]

Category: Water Safety, Plumbing, Mechanical

Colleagues: Mike Anthony, Richard Robben, Steve Snyder, Larry Spielvogel

 


LEARN MORE

Workspace / AWWA

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content