Campus Rail Transit

Loading
loading...

Campus Rail Transit

August 22, 2024
mike@standardsmichigan.com
,
No Comments

The West Virginia University PRT (Personal Rapid Transit) system is a unique and innovative form of public transportation that serves the WVU campus and the city of Morgantown, West Virginia. The PRT system consists of a series of automated, driverless vehicles that operate on an elevated track network, providing fast and convenient transportation to key destinations on and around the WVU campus.

The PRT system was first developed in the 1970s as a solution to the growing traffic congestion and parking demand on the WVU campus. The system was designed to be efficient, reliable, and environmentally friendly, and to provide a high-tech, futuristic mode of transportation that would appeal to students and visitors.

The PRT system currently operates five different stations, with stops at key campus locations such as the Mountainlair Student Union, the Engineering Research Building, and the Health Sciences Center. The system is free for all WVU students, faculty, and staff, and also offers a low-cost fare for members of the general public.

The PRT system has been recognized as one of the most advanced and innovative public transportation systems in the world, and has won numerous awards for its design, efficiency, and environmental sustainability. It has also become an iconic symbol of the WVU campus, and is often featured in promotional materials and advertising campaigns for the university.

Standards West Virginia

More

Federal Transit Administration

West Virginia Department of Education: School Transportation

“Evaluation of the West Virginia University Personal Rapid Transit System” | A. Katz and A. Finkelstein (Journal of Transportation Engineering, 1987) This paper evaluates the technical and operational performance of the WVU PRT system based on data collected over a six-year period. The authors identify several issues with the system, including maintenance problems, limited capacity, and difficulties with vehicle docking and undocking.

“Modeling of the West Virginia University Personal Rapid Transit System” by J. Schroeder and C. Wilson (Transportation Research Record, 2002) This paper presents a mathematical model of the WVU PRT system that can be used to analyze its performance and identify potential improvements. The authors use the model to evaluate the impact of various factors, such as station dwell time and vehicle capacity, on the system’s overall performance.

“Evaluating the Effectiveness of Personal Rapid Transit: A Case Study of the West Virginia University System” by K. Fitzpatrick, M. Montufar, and K. Schreffler (Journal of Transportation Technologies, 2013) This paper analyzes the effectiveness of the WVU PRT system based on a survey of users and non-users. The authors identify several challenges facing the system, including low ridership, reliability issues, and high operating costs.

Association for Commuter Transportation: Accreditation Standards

 

Campus Micromobility 300

August 22, 2024
mike@standardsmichigan.com

No Comments

Artist: Syd Mead | Photo Credit: United States Steel

We find town-gown political functionaries working to accommodate students traveling on micro-scooters.  Several non-profit trade associations compete for “ownership” of some part of the economic activity associated with micromobility.   One of several domain incumbents is SAE International.   Here is how SAE International describes the micromobility transformation:

“…Emerging and innovative personal mobility devices, sometimes referred to as micromobility, are proliferating in cities around the world. These technologies have the potential to expand mobility options for a variety of people. Some of these technologies fall outside traditional definitions, standards, and regulations. This committee will initially focus on low-speed micromobility devices and the technology and systems that support them that are not normally subject to the United States Federal Motor Vehicle Safety Standards or similar regulations. These may be device-propelled or have propulsion assistance. They are low-speed devices that have a maximum device-propelled speed of 30 mph. They are personal transportation vehicles designed to transport three or fewer people. They are consumer products but may be owned by shared- or rental-fleet operators. This committee is concerned with the eventual utilization and operational characteristics of these devices, and how they may be safely incorporated in the transportation infrastructure. This committee will develop and maintain SAE Standards, Recommended Practices, and Information Reports within this classification of mobility. The first task of the committee will be to develop a taxonomy of low-speed micromobility devices and technologies. Currently, many of these terms are not consistently named, defined, or used in literature and practice. This task will also help refine the scope of the committee and highlight future work….”

Micromobility standards development requires sensitivity to political developments in nearly every dimension we can imagine.

University of Toledo

Specifically, we follow developments in SAE J3194: Taxonomy and Definitions for Terms Related to Micromobility Devices.  Getting scope, title, purpose and definitions established is usually the first step in the process of developing a new technical consensus product.   From the project prospectus:

This Recommended Practice provides a taxonomy and definitions for terms related to micromobility devices. The technical report covers low-speed micromobility devices (with a maximum device-propelled speed of 30 mph) and the technology and systems that support them that are not normally subject to the United States Federal Motor Vehicle Safety Standards or similar regulations. These devices may be device-propelled or have propulsion assistance. Micromobility devices are personal transportation vehicles designed to transport three or fewer people. They are consumer products but may be owned by shared- or rental-fleet operators. This Recommended Practice does not provide specifications or otherwise impose requirements of micromobility devices.

 

SAE standards action appears on the pages linked below:

SAE Standards Development Home Page

SAE Standards Works

 

Apart from the rising level of discussion on vehicle-to-grid technologies (which we track more closely with the IEEE Education & Healthcare Facilities Committee) there is no product at the moment that business units in the education industry can comment upon.   Many relevant SAE titles remain “Works in Progress”.  When a public commenting opportunity on a candidate standard presents itself we will post it here.

We host periodic Mobility colloquia; SAE titles standing items on the agenda.  See our CALENDAR for the next online session; open to everyone.

University of Michigan Ann Arbor

Issue: [19-130]

Category: Electrical, Facility Asset Management, Transportation

Colleagues: Mike Anthony, Paul Green, Jack Janveja, Richard Robben

 


 

LEARN MORE:

SAE International ABOUT

Inspiring a College Campus to Design, Create, and Build Green Small Engine Vehicles 2009-32-0107

All-Electric School Bus for Total Zero Emission

Electric Vehicle Power Transfer

August 22, 2024
mike@standardsmichigan.com

No Comments

2023 National Electrical CodeCurrent Issues and Recent Research

2026 National Electrical Code Workspace


August 5, 2021

The 2020 National Electrical Code (NEC) contains significant revisions to Article 625 Electric Vehicle Power Transfer Systems.  Free access to this information is linked below:

2023 National Electrical Code

2020 National Electrical Code

You will need to set up a (free) account to view Article 625 or you may join our colloquium today.

Public input for the 2023 Edition of the NEC has already been received.  The work of the assigned committee — Code Making Panel 12 — is linked below:

NFPA 70_A2022_NEC_P12_FD_PIReport_rev

Mighty spirited debate.   Wireless charging from in-ground facilities employing magnetic resonance are noteworthy.

 

Technical committees meet November – January to respond.   In the intervening time it is helpful  break down the ideas that were in play last cycle.  The links below provide the access point:

Public Input Report Panel 12

Public Comment Report Panel 12

Panel 12 Final Ballot

We find a fair amount of administrative and harmonization action; fairly common in any revision cycle.   We have taken an interest in a few specific concepts that track in academic research construction industry literature:

  • Correlation with Underwriters Laboratory product standards
  • Bi-Directional Charging & Demand Response
  • Connection to interactive power sources

As a wiring safety installation code — with a large installer and inspection constituency — the NEC is usually the starting point for designing the power chain to electric vehicles.   There is close coupling between the NEC and product conformance organizations identified by NIST as Nationally Recognized Testing Laboratories; the subject of a separate post.

Edison electric vehicle | National Park Service, US Department of the Interior

After the First Draft is released June 28th public comment is receivable until August 19th.

We typically do not duplicate the work of the 10’s of thousands of National Electrical Code instructors who will be fanning out across the nation to host training sessions for electrical professionals whose license requires mandatory continuing education.  That space has been a crowded space for decades.   Instead we co-host “transcript reading” sessions with the IEEE Education & Healthcare Facilities Committee to sort through specifics of the 2020 NEC and to develop some of the ideas that ran through 2020 proposals but did not make it to final ballot and which we are likely to see on the docket of the 2023 NEC revision.   That committee meets online 4 times monthly.  We also include Article 625 on the standing agenda of our Mobility colloquium; open to everyone.   See our CALENDAR for the next online meeting

Issue: [16-102]

Category: Electrical, Transportation & Parking, Energy

Colleagues: Mike Anthony, Jim Harvey

Workspace / NFPA


More

U.S. NATIONAL ELECTRIC VEHICLE SAFETY STANDARDS SUMMIT | DETROIT, MICHIGAN 2010

Gallery: Electric Vehicle Fire Risk

 

Electric Vehicle Charging

August 22, 2024
mike@standardsmichigan.com
No Comments

GROUP A MODEL BUILDING CODES: Comments on Committee Actions will be received until July 8th

Edison electric vehicle | National Park Service, US Department of the Interior

 

Free public access to the 2021 edition of the International Energy Conservation Code (IECC) is linked below:

2021 International Energy Conservation Code

This title will be updated within a reconfigured code development cycle linked below:

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

Keep in mind that many electric vehicle safety and sustainability concepts will track in other titles in the ICC catalog.   It is enlightening to see other energy related proposals tracking in the most recent Group A code revision cycle

The following proposals discussed during the Group A Hearings ended earlier this month are noteworthy:

IBC § 202 (NEW) | G66-21 |  Electrical mobility definitions

IBC § 1107.2, et al | E124-21 & E125-21 & E126-21 |  Electrical vehicle charging stations for R-2 occupancies.

From the Group B revision cycle — COMPLETE MONOGRAPH:

R309.6 Electric vehicle charging stations and systems. Where provided, electric vehicle charging systems shall be installed in accordance with NFPA 70. Electric vehicle charging system equipment shall be listed and labeled in accordance with UL 2202. Electric vehicle supply equipment shall be listed and labeled in accordance with UL 2594.

IBC 406.2.7 Electric vehicle charging stations and systems. Where provided, electric vehicle charging systems shall be installed in accordance with NFPA 70. Electric vehicle charging system equipment shall be listed and labeled in accordance with UL 2202. Electric vehicle supply equipment shall be listed and labeled in accordance with UL 2594. Accessibility to electric vehicle charging stations shall be provided in accordance with Section 1108.

TABLE R328.5 MAXIMUM AGGREGATE RATINGS OF ESS (Energy Storage Systems) – PDF Page 1476

Incumbents are socking in EV concepts all across the ICC catalog.  We refer them to experts in the Industrial Applications Society IEEE E&H Committee.

 

 

One of the more spirited debates in recent revision cycles is the following:

Who shall pay for electrical vehicle charging infrastructure?   

The underlying assumption is that the electrification of the global transportation grid has a net benefit.   We remain mute on that question; the question of net gain.

Of course, many proposals pointed the finger at the stakeholder with the deepest pockets.  Accordingly, new commercial building owners will be required to install charging stations for new buildings.   During 2018 and 2019 we tracked the action in the workspace below so that we could collaborate with the IEEE Education & Healthcare Facilities Committee:

2021 Electric Vehicle Infrastructure

Given that most higher education facilities are classified as commercial, the cost of charging stations will be conveyed into the new building construction budget unless the unit takes an exception.   Generally speaking, most colleges and universities like to display their electric vehicle credentials, even if the use of such charging stations remains sparse.

Cornell University

Issue: [11-40]

Category: Electrical, #SmartCampus

Colleagues: Mike Anthony, Jim Harvey

* The education industry has significant square footage this is classified as residential; particularly on the periphery of large research campuses.


LEARN MORE:

ICC 2021/2022 Code Development Cycle

The Top 5 Energy Efficiency Proposals for the 2021 IECC

Archive / IECC Electric Vehicle Charging

 

What Is A Standard Drink?

August 21, 2024
mike@standardsmichigan.com
, , , , ,
No Comments

 

“Rather a bottle in front of me than a frontal lobotomy”

— Some guy

 

Many people are surprised to learn what counts as a “drink”. The amount of liquid in your glass, can, or bottle does not necessarily match up to how much alcohol is actually in your drink.  Even before the United States federal government withdrew from regulating alcohol, the conversation, and degree of agreement and  attitude, remains remarkably regionally specific:

Missouri University of Science & Technology: What is a Standard Drink?

University of South Alabama: What is a Standard Drink?

Stanford University Office of Alcohol Policy and Education

Other nations serve alcohol to students on campus in university owned facilities.

Maynooth University Student Union County Kildare


College students create the ultimate hangover cure


Infotech 100

August 21, 2024
mike@standardsmichigan.com
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Touring the Coffee Shops of Nottingham

August 21, 2024
mike@standardsmichigan.com

No Comments

The “Golden Cup” Standard


England | East Midlands

“O brave new world, that has such people in’t!” | The Tempest, William Shakespeare, Act 5, Scene 1

Energy 400

August 21, 2024
mike@standardsmichigan.com
No Comments

Climate Psychosis | Other Ways of Knowing Climate Change

“The Conquest of Energy” / José Chávez Morado / Universidad Nacional Autónoma de México

We began last year breaking down our coverage of education settlement energy codes and standards into the tranches listed below:

Energy 200: Codes and standards for building premise energy systems.  (Electrical, heating and cooling of the building envelope)

Energy 300: Codes and standards that support the energy systems required for information and communication technology

21 March 2024

Energy 400: Codes and standards for energy systems between campus buildings.  (District energy systems including interdependence with electrical and water supply)

ASHRAE Proposal for a District Cooling Standard

A different “flavor of money” runs through each of these domains and this condition is reflected in best practice discovery and promulgation.  Energy 200 is less informed by tax-free (bonded) money than Energy 400 titles.

Some titles cover safety and sustainability in both interior and exterior energy domains so we simply list them below:

ASME A13.1 – 20XX, Scheme for the Identification of Piping Systems | Consultation closes 6/20/2023

ASME Boiler Pressure Vessel Code

ASME BPVC Codes & Standards Errata and Notices

ASHRAE International 90.1 — Energy Standard for Buildings Except Low-Rise Residential Buildings

Data Center Operations & Maintenance

2018 International Green Construction Code® Powered by Standard 189.1-2017

NFPA 90 Building Energy Code

NFPA 855 Standard for the Installation of Stationary Energy Storage Systems

IEEE Electrical energy technical literature

ASTM Energy & Utilities Overview

Underwriters Laboratories Energy and Utilities

There are other ad hoc and open-source consortia that occupy at least a niche in this domain.  All of the fifty United States and the Washington DC-based US Federal Government throw off public consultations routinely and, of course, a great deal of faculty interest lies in research funding.

Please join our daily colloquia using the login credentials at the upper right of our home page.

References: Energy 400

More

United States Department of Energy

International Energy Agency World Energy Outlook 2022

International Standardization Organization

ISO/TC 192 Gas Turbines

Energy and heat transfer engineering in general

Economics of Energy, Volume: 4.9 Article: 48 , James L. Sweeney, Stanford University

Global Warming: Scam, Fraud, or Hoax?, Douglas Allchin, The American Biology Teacher (2015) 77 (4): 309–313.

Helmholtz and the Conservation of Energy, By Kenneth L. Caneva, MIT Press

International District Energy Association Campus Energy 2023 Conference: February 29-March 2 (Grapevine Texas)

NRG Provides Strategic Update and Announces New Capital Allocation Framework at 2023 Investor Day

Evaluation of European District Heating Systems for Application to Army Installations in the United States

Gallery: Other Ways of Knowing Climate Change

Allston District Energy

Campus Bulk Electrical Distribution

Interdependent Water & Electricity Networks

Interoperability of Inverter-Based Resources

Gallery: Campus Steam Tunnels

Electrical Resource Adequacy

 

From our video archive:


 

Boiler & Pressure Vessel Code

August 21, 2024
mike@standardsmichigan.com

No Comments

“Mechanic and Steam Pump” | Lewis W. Hine (1921)

 

The heating and cooling requirements of K-12 schools, college and university educational, medical research and healthcare delivery campuses are a large market for boiler pressure vessel manufacturers, installers, maintenance personnel and inspectors.  The demand for building new, and upgrading existing boilers — either single building boilers, regional boilers or central district energy boilers — presents a large market for professional engineering firms also.  A large research university, for example, will have dozens, if not well over 100 boilers that heat and cool square footage in all climates throughout the year.  The same boilers provide heating and cooling for data centers, laundry operations, kitchen steam tables in hospitals and dormitories.

The safety rules for these large, complex and frankly, fearsome systems, have been developed by many generations of mechanical engineering professionals in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC).   From the BPVC scope statement:

“…The International Boiler and Pressure Vessel Code establishes rules of safety — relating only to pressure integrity — governing the design, fabrication, and inspection of boilers and pressure vessels, and nuclear power plant components during construction. The objective of the rules is to provide a margin for deterioration in service. Advancements in design and material and the evidence of experience are constantly being added…”

Many state and local governments incorporate the BPVC by reference into public safety regulations and have established boiler safety agencies.  Boiler explosions are fairly common, as a simple internet search on the term “school boiler explosion” will reveal.  We linked one such incident at the bottom of this page.

University of Michigan Central Heating Plant

The 2023 Edition of the BPVC is the current edition; though the document is divided into many sections that change quickly.

ASME Codes & Standards Electronic Tools

ASME Proposals Available For Public Review

ASME Section IV: Rules for the Construction of Heating Boilers (2019)

Public consultation on changes to the standard for controls and safety devices for automatically fired boilers closes September 25th.   

This is a fairly stable domain at the moment.  We direct you elsewhere to emergent topics:

Ghost kitchens gaining steam on college campuses

College: the Next Big Frontier for Ghost Kitchens

Illinois Admin. Code tit. 77, § 890.1220 – Hot Water Supply and Distribution

Design Considerations for Hot Water Plumbing

FREE ACCESS: 2019 ASME Boiler and Pressure Code (Section VI) 

Plumbing

 

 

Two characteristics of the ASME standards development process are noteworthy:

  • Only the proposed changes to the BPVC are published.   The context surrounding a given change may be lost or not seen unless access to previous version is available.  Knowledgeable experts who contribute to the development of the BPVC usually have a previous version, however.  Newcomers to the process may not.
  • The BPVC has several breakout committees; owing to its longer history in the US standards system and the gathering pace of complexity in this technology.

We unpack the ASME bibliography primarily during our Mechanical, Plumbing and Energy colloquia; and also during our coverage of large central laundry and food preparation (Kitchens 100) colloquia.  See our CALENDAR for the next online meeting, open to everyone.

Issue: [12-33] [15-4] [15-161] [16-77] [18-4] [19-157]

Category: District Energy, Energy, Mechanical, Kitchens, Hot Water

Contact: Eric Albert, Richard Robben, Larry Spielvogel

More:

Standards Michigan BPVC Archive

ASME BPVC Resources

Big Ten & Friends Energy Conference 2023

Standards Michigan Workspace (Requires access credentials from bella@standardsmichigan.com).

School Boiler Maintenance Programs: How Safe Are The Children? 

Boiler Explodes at Indiana High School


Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content