Wireless electric vehicle charging on streets uses electromagnetic induction to transfer power without physical connectors. A primary coil, embedded in the road surface, generates an alternating magnetic field when energized by an external power source. A secondary coil, installed on the EV’s underside, captures this field, inducing an electric current that charges the vehicle’s battery. Efficient power transfer requires precise alignment between coils, often aided by sensors or magnetic guidance systems.
Operating typically at frequencies of 20–100 kHz, the system ensures safe, non-contact energy transfer with efficiencies up to 90%. Power levels vary from 3.3 kW for slow charging to 22 kW or higher for faster systems. Infrastructure includes power inverters, communication modules for vehicle-grid interaction, and safety mechanisms to prevent electromagnetic interference or hazards. Dynamic charging, where EVs charge while moving, extends this concept using sequential coil activation along roads.
Updated July 15, 2025
2026 National Electrical Code Table of Contents
2026 NEC First Draft: How Did We Get Here?
Public Input Transcript: First Draft | Public Comment Transcript: Second Draft
2023 National Electrical Code | Current Issues and Recent Research
August 5, 2021
The 2020 National Electrical Code (NEC) contains significant revisions to Article 625 Electric Vehicle Power Transfer Systems. Free access to this information is linked below:
You will need to set up a (free) account to view Article 625 or you may join our colloquium today.
Public input for the 2023 Edition of the NEC has already been received. The work of the assigned committee — Code Making Panel 12 — is linked below:
NFPA 70_A2022_NEC_P12_FD_PIReport_rev
Mighty spirited debate. Wireless charging from in-ground facilities employing magnetic resonance are noteworthy. Other Relevant Articles:
Technical committees meet November – January to respond. In the intervening time it is helpful break down the ideas that were in play last cycle. The links below provide the access point:
Public Comment Report Panel 12
We find a fair amount of administrative and harmonization action; fairly common in any revision cycle. We have taken an interest in a few specific concepts that track in academic research construction industry literature:
As a wiring safety installation code — with a large installer and inspection constituency — the NEC is usually the starting point for designing the power chain to electric vehicles. There is close coupling between the NEC and product conformance organizations identified by NIST as Nationally Recognized Testing Laboratories; the subject of a separate post.
After the First Draft is released June 28th public comment is receivable until August 19th.
We typically do not duplicate the work of the 10’s of thousands of National Electrical Code instructors who will be fanning out across the nation to host training sessions for electrical professionals whose license requires mandatory continuing education. That space has been a crowded space for decades. Instead we co-host “transcript reading” sessions with the IEEE Education & Healthcare Facilities Committee to sort through specifics of the 2020 NEC and to develop some of the ideas that ran through 2020 proposals but did not make it to final ballot and which we are likely to see on the docket of the 2023 NEC revision. That committee meets online 4 times monthly. We also include Article 625 on the standing agenda of our Mobility colloquium; open to everyone. See our CALENDAR for the next online meeting
Issue: [16-102]
Category: Electrical, Transportation & Parking, Energy
Colleagues: Mike Anthony, Jim Harvey
More
U.S. NATIONAL ELECTRIC VEHICLE SAFETY STANDARDS SUMMIT | DETROIT, MICHIGAN 2010
Complete Monograph (2630 Pages)
IBC Rebuttal on G152-25 Performance Electrical Design
Partial listing. We have until July 15th to comment on committee action
Our proposal G153-25: Page 754
Michigan Modular G195-25: Page 859
“Clinical Need” definition for enhanced security: Page 765
“Electric Vehicle Charger” definition by the National Parking Association/Parking Consultant’s Council: Page 457
“EV Charging Space” definition: Page 458
“EV Supply Equipment” definition: Page 460
ADM20-25 Authority of building official in natural disasters and high hazard regions, p141
ASM3-25 Electrical equipment re-use, p195
G2-25. New definition for Animal Housing Facilities, p438
S57-25. Quite a bit of back and forth on wind and PV “farms, p1053, et. al (“Wind and solar farms are different from animal and produce farms” — Mike Anthony)
G143-25 Lighting Section 1204L remote rooms, windowless rooms, University of Texas Austin student accommodation costs, p. 737-
PM31-25 Housekeeping and sanitation in owned property as law, p1794
PM50-25, Sleeping units to be private, p.1829
RB146-25. Energy storage systems installed in garages, requirements for physical protection, p. 2195
RB144-25, Load capacity ratings and compliance with NFPA 855, p. 2186
RB143-25, Working roof walking access around solar panels, p. 2180
SP1-25 New definition of base flood elevation for purpose of correlating requirements for electrical safety, et. al, p. 2578
Link to Track 1 and Track 2 Webcast
In his books, The Black Swan and Antifragile, Nassim Nicholas Taleb observes that freak disasters—rare, high-impact events—are unpredictable and often underestimated due to their low probability. He calls these “Black Swan” events, characterized by their extreme rarity, severe consequences, and retrospective predictability. Taleb argues that people and systems are overly reliant on normalcy and linear models, ignoring the potential for such outliers.
These disasters expose the fragility of complex systems, like financial markets or infrastructure, which are unprepared for extreme shocks. In Antifragile, he contrasts fragile systems with antifragile ones, which thrive under stress. Taleb emphasizes that freak disasters are not anomalies but inevitable in a complex world, urging risk management that accounts for uncertainty rather than predictability. He critiques overconfidence in forecasting and advocates for building resilience to mitigate the devastating effects of these unpredictable events.
We cover this ground, more than tangentially, in our activism in disaster management standards setting. Our coverage of this topic dates back to 1993 which the links below should reveal. We will expand upon this topic as more information is derived from this past week’s events in Kerr County Texas.
“Extreme events and how to live with them” Nassim Nicholas
Talebhttps://t.co/fWYvN0v1ud@DarwinCollege @nntaleb@nyutandon @UMassAmherst pic.twitter.com/S83c8LgLs4— Standards Michigan (@StandardsMich) February 11, 2021
It is impossible to overestimate the sensitivity of this topic but poke at it, we will. At the moment, the less written here; the better. Much of this domain is outside our wheelhouse; though it has settled on a few first principles regarding patents, trademarks and copyrights relevant to the user-interest we describe in our ABOUT.
Many large research universities have a watchdog guarding its intellectual property and trying to generate income from it, and; of course, for branding. We will dwell on salient characteristics of the intellectual property domain with which we reckon daily — highlighting the market actors and the standards they have agreed upon.
Additionally, technical standards developers are generally protected by copyright law, as the standards they create are typically considered original works of authorship that are subject to copyright protection. In the United States, the Copyright Act of 1976 provides copyright protection for original works of authorship, which includes technical standards. This means that the developers of technical standards have the exclusive right to reproduce, distribute, and create derivative works based on their standards, and others must obtain permission or a license to use or reproduce the standards.
Some technical standards may be subject to certain exemptions or limitations under copyright law. In the United States, there is a doctrine called “fair use” that allows for limited use of copyrighted works for purposes such as criticism, comment, news reporting, teaching, scholarship, or research, without the need for permission or a license from the copyright owner. Almost everything we do at Standards Michigan falls under the fair use doctrine. This is why we have no search feature and most pages are protected. If we err in this; let us know.
More
ASTM International Intellectual Property Policy
Healthcare Standards Institute IP Policy
International Code Council Copyright Protection
Underwriters Laboratory Patent Policy
Vad är en standard? Syftet med standarder är att skapa enhetliga och transparenta rutiner som vi kan enas kring. Det ligger ju i allas intresse att höja kvaliteten, undvika missförstånd och slippa uppfinna hjulet på nytt varje gång. https://t.co/zKhgPXPdpW pic.twitter.com/oKejdKSm47
— Svenska institutet för standarder, SIS (@svenskstandard) July 15, 2019
Innovation – Market Acceptance – Standardization – Human Right
The NPADC is a team competition for law students to develop skills in drafting patent applications, focusing on U.S. patent law. Teams receive a hypothetical invention statement, conduct prior art searches, draft specifications and claims, and present their work to judges, including patent examiners and practitioners. For 2025, the invention was an extra-uterine system for supporting premature fetuses, indicating the complexity of tasks involved
There is no publicly available timetable for the 2026 National Patent Application Drafting Competition (NPADC) from the United States Patent and Trademark Office (USPTO) as of the latest available information. The USPTO typically releases detailed schedules for the NPADC closer to the competition year, often in the fall of the preceding year (e.g., October or November 2025 for the 2026 competition).
After months of hard work, the top five teams met at USPTO headquarters today for the final round of the 2025 National Patent Application Drafting Competition. 🏆 And the winners are … ⬇️
🥇 First place — @UofMNLawSchool pic.twitter.com/uwNSJR0oBy
— USPTO (@uspto) April 4, 2025
Thomas Jefferson was the leader in founding the United States Patent Office. Jefferson was a strong supporter of the patent system and believed that it was essential for promoting innovation and progress in the United States. As the first Secretary of State Jefferson was responsible for implementing the country’s patent system.
Article I, Section 8, Clause 8 of the United States Constitution reads as follows:
“The Congress shall have Power To promote the Progress of Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their respective Writings and Discoveries.”
In 1790, Jefferson drafted the first Patent Act, which established the procedures for applying for and granting patents. The act also created the United States Patent Office as a government agency to oversee the patent system. Jefferson appointed the first Patent Board, which was responsible for reviewing patent applications and making recommendations to the Secretary of State.
Jefferson was deeply involved in the early development of the Patent Office and was instrumental in shaping its policies and procedures. He believed that the patent system should be accessible to all inventors, regardless of their social or economic status, and he worked to streamline the patent application process to make it more efficient and user-friendly.
In recognition of his contributions to the development of the patent system, Jefferson is often referred to as the “Father of American Innovation.”
This clause grants Congress the authority to establish a system of patents and copyrights to protect the intellectual property of inventors and authors. The purpose of this system is to encourage innovation and creativity by providing inventors and authors with a temporary monopoly on their creations, allowing them to profit from their work and invest in future projects. The clause also emphasizes the importance of promoting the progress of science and the useful arts, reflecting the belief of the founders that the development of new technologies and inventions was essential for the growth and prosperity of the United States.
Over the years, the Patent Office has played a crucial role in the development of the United States as a technological leader, granting patents for inventions ranging from the telephone and the light bulb to the airplane and the computer. Today, the Patent Office is part of the United States Department of Commerce and is responsible for examining patent applications and issuing patents to inventors and companies.
Welcome to the 2025 National Patent Application Drafting Competition!
2024 National Patent Application Drafting Competition
Congratulations to the winners of this year’s National Patent Application Drafting Competition – Khailee, Bree, Rita, and Maria from @gwlaw, and thank you to all participants! Learn more about the competition: https://t.co/gB64fnXaM6 pic.twitter.com/FWqak6Mr1m
— USPTO (@uspto) April 14, 2023
From creating a race car safety device that protects drivers from injury to revolutionizing chemotherapy, Spartans have contributed to more than 3,300 inventions. #SpartansWill pic.twitter.com/dchCs0BFBx
— MSU (@michiganstateu) February 21, 2025
The International Trade Administration (ITA) of the U.S. Department of Commerce (DOC) is requesting public comments to gain insights on the current global artificial intelligence (AI) market. Responses will provide clarity about stakeholder concerns regarding international AI policies, regulations, and other measures which may impact U.S. exports of AI technologies. Additionally, the request for information (RFI) includes inquiries related to AI standards development. ANSI encourages relevant stakeholders to respond by ITA’s deadline of October 17, 2022.
Commerce Department Launches the National Artificial Intelligence Advisory Committee
Save the date! NIST is set to release our AI Risk Management Framework this week.
📅 Thursday, January 26 at 10am ET
📍 Livestream (no registration needed)Learn more: https://t.co/2YmN2R6bTV pic.twitter.com/muICEyRYcP
— National Institute of Standards and Technology (@NIST) January 23, 2023
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwB pic.twitter.com/GkAXrHoQ9T
— USPTO (@uspto) July 13, 2023
Standards Michigan Group, LLC
2723 South State Street | Suite 150
Ann Arbor, MI 48104 USA
888-746-3670