Hunting for Radio Frequency Interference

Loading
loading...

Du froid

December 11, 2025
mike@standardsmichigan.com
, , , ,
No Comments

“Weather is fate”

Charles Louis de Secondat, Baron de La Brède et de Montesquieu

“Road to Versailles at Louveciennes” 1869 Camille Pissarro

Heat tracing is a process used to maintain or raise the temperature of pipes and vessels in order to prevent freezing, maintain process temperature, or ensure that products remain fluid and flow through the system properly.  Without electric heat tracing; much of the earth would be uninhabitable.

Heat tracing works by using an electric heating cable or tape that is wrapped around the pipe or vessel, and then insulated to help retain the heat. The heating cable is connected to a power source and temperature control system that maintains the desired temperature by regulating the amount of heat output from the cable. Heat tracing is commonly used in industrial applications where temperature control is critical, such as in chemical plants, refineries, and oil and gas facilities.

There are several types of heat tracing, including electric heat tracing, steam tracing, and hot water tracing, each of which have their own unique advantages and disadvantages. The selection of the appropriate type of heat tracing depends on the specific application and the required temperature range, as well as factors such as cost, maintenance, and safety considerations.

Heat Tracing for Piping SpecificationNECA Standards (N.B. Link unstable)

2026 NEC CMP-17 Public Input Report | 2026 NEC CMP-17 Second Draft Report

Northern Michigan University | Marquette County

Today we review the literature for snow and ice management (and enjoyment) produced by these standards-setting organizations:

Accredited Snow Contractors Association

American Society of Civil Engineers

American Society of Mechanical Engineers

ASTM International

FM Global

Destructive Deep Freeze Strikes Cold and Hot Regions Alike

Institute of Electrical & Electronic Engineers

Electrical Heat Tracing: International Harmonization — Now and in the Future

International Code Council

International Building Code: Chapter 15 Roof Assemblies and Rooftop Structures

National Electrical Contractors Association

National Fire Protection Association

Winter is Coming: Is Your Facility Protected? (Holly Burgess, November 2022)

National Electrical Code: Articles 426-427

National Floor Safety Institute

Snow and Ice Management Association

Underwriters Laboratories

Manufacturers:

Chromalox Electrical Heat Tracing Systems Design Guide



It is a surprisingly large domain with market-makers in every dimension of safety and sustainability; all of whom are bound by state and federal regulations.

Join us at 16:00 UTC with the login credentials at the upper right of our home page.


There have been several recent innovations that have made it possible for construction activity to continue through cold winter months. Some of the most notable ones include:

  1. Heated Job Site Trailers: These trailers are equipped with heating systems that keep workers warm and comfortable while they take breaks or work on plans. This helps to keep morale up and prevent cold-related health issues.
  2. Insulated Concrete Forms (ICFs): ICFs are prefabricated blocks made of foam insulation that are stacked together to form the walls of a building. The foam insulation provides an extra layer of insulation to keep the building warm during cold winter months.
  3. Warm-Mix Asphalt (WMA): WMA is a type of asphalt that is designed to be used in colder temperatures than traditional hot-mix asphalt. This allows road construction crews to work through the winter months without having to worry about the asphalt cooling and becoming unusable.
  4. Pneumatic Heaters: These heaters are used to warm up the ground before concrete is poured. This helps to prevent the concrete from freezing and becoming damaged during the winter months.
  5. Electrically Heated Mats: These mats are placed on the ground to prevent snow and ice from accumulating. This helps to make the job site safer and easier to work on during the winter months.

Overall, these innovations have made it possible for construction crews to work through the winter months more comfortably and safely, which has helped to keep projects on schedule and minimize delays.

Somewhat related:

Snow Load Calculator

December 11, 2025
mike@standardsmichigan.com
No Comments

“Among famous traitors of history one might mention the weather.”

Ilka Chase, The Varied Airs of Spring

 

Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-22)

ASCE Hazard Tool

Quick & Dirty Snow Load Calculator

Call for public proposals for the 2028 edition

Structural Design

 

 

Provision of Slip Resistance on Walking/Working Surfaces

Building Construction in Cold Weather

December 11, 2025
mike@standardsmichigan.com
No Comments

AI Generated | See our LIVE construction cameras

Much of our assertion that building construction in education communities resembles a perpetual motion machine rests upon innovation in a broad span of technologies that is effectively weather resistant; that along with development of construction scheduling. Today at 16:0 UTC we review the technical, management and legal literature that supports safe and sustainable construction,

1. Cold-Weather Concrete Technology

    • Accelerating Admixtures: These are chemical additives that speed up the curing process of concrete, allowing it to set even in low temperatures.
    • Heated Concrete Blankets: Electric blankets that maintain a consistent temperature around freshly poured concrete.
    • Hot Water Mixing: Using heated water during the mixing process to ensure that concrete maintains the proper temperature for curing.
    • Air-Entrained Concrete: Helps resist freeze-thaw cycles by creating tiny air pockets in the concrete.

2. Temporary Heating Solutions

    • Portable Heaters: Diesel, propane, or electric heaters used to maintain a warm environment for workers and materials.
    • Enclosed Workspaces: Temporary enclosures (tents or tarps) around construction areas retain heat and shield against snow and wind.

3. Advanced Building Materials

    • Cold-Weather Asphalt: Modified asphalt that can be laid at lower temperatures.
    • Pre-fabricated Components: Factory-assembled parts (walls, beams) that reduce on-site work in harsh conditions.

4. Insulation Techniques

    • Insulated Tarps and Blankets: Used to cover construction materials and newly laid concrete to prevent freezing.
    • Frost-Protected Shallow Foundations: Insulation techniques to keep ground temperatures stable and prevent frost heave.

5. Ground Thawing Technologies

    • Hydronic Ground Heaters: Circulate heated fluid through hoses laid on frozen ground to thaw it before excavation or foundation work.
    • Steam Thawing: Direct steam application to melt snow or thaw frozen soil.

6. Lighting Solutions

    • High-Intensity LED Lights: Compensate for reduced daylight hours to ensure safe and efficient work conditions.

7. Weather-Resistant Machinery

    • Winterized Equipment: Construction equipment with heated cabins, antifreeze systems, and enhanced traction for icy conditions.

8. Workforce Adaptations

    • Cold-Weather Gear: Heated clothing, gloves, and footwear keep workers safe and productive.
    • Modified Work Schedules: Shorter shifts or daytime-only work to limit exposure to extreme cold.

9. Snow and Ice Management

    • Deicing Solutions: Chemical deicers and mechanical snow-removal equipment keep work areas safe and accessible.
    • Heated Surfaces: Embedded heating systems in ramps or entryways prevent ice buildup.

The Occupational Safety and Health Administration does not have a specific regulation solely dedicated to building construction in cold winter weather. However, several OSHA standards and guidelines are applicable to address the hazards and challenges of winter construction work. These regulations focus on worker safety, protection from cold stress, proper equipment use, and general site safety. Key applicable OSHA regulations and guidance include:

1. Cold Stress and Temperature Exposure

  • General Duty Clause (Section 5(a)(1)): Employers are required to provide a workplace free from recognized hazards likely to cause death or serious physical harm. This includes addressing cold stress hazards, such as hypothermia, frostbite, and trench foot.
  • OSHA Cold Stress Guide: OSHA provides guidance on recognizing, preventing, and managing cold stress but does not have a specific cold stress standard.

2. PPE (Personal Protective Equipment)

  • 29 CFR 1926.28: Requires employers to ensure the use of appropriate personal protective equipment.
  • 29 CFR 1910.132: General requirements for PPE, including insulated gloves, boots, and clothing to protect against cold weather.

3. Walking and Working Surfaces

  • 29 CFR 1926.501: Fall Protection in Construction. Ice and snow can increase fall risks, so proper precautions, including removal of hazards and use of fall protection systems, are required.
  • 29 CFR 1926.451: Scaffolding. Specific safety measures must be implemented to ensure stability and secure footing in icy conditions.

4. Snow and Ice Removal

  • Hazard Communication Standard (29 CFR 1910.1200): Ensures workers are informed about hazards related to de-icing chemicals or other substances used in winter construction.

5. Powered Equipment

  • 29 CFR 1926.600: Equipment use, requiring machinery to be properly maintained and adjusted for cold-weather operations, including anti-freeze measures and winterization.

6. Excavations and Frost Heave

  • 29 CFR 1926.651 and 1926.652: Excavation standards. Frozen ground and frost heave pose additional risks during trenching and excavation activities.

7. Temporary Heating

  • 29 CFR 1926.154: Requirements for temporary heating devices, including ventilation and safe usage in confined or enclosed spaces.

8. Illumination

  • 29 CFR 1926.56: Lighting standards to ensure sufficient visibility during reduced daylight hours in winter.

9. Emergency Preparedness

  • First Aid (29 CFR 1926.50): Employers must ensure quick access to first aid, especially critical for treating cold-related illnesses or injuries.

10. Hazard Communication and Training

  • 29 CFR 1926.21(b): Employers must train employees on recognizing winter hazards, such as slips, trips, falls, and cold stress.

By following these OSHA standards and implementing additional best practices (e.g., scheduling breaks in heated shelters, providing warm beverages, and encouraging layered clothing), employers can ensure a safer construction environment during winter conditions.


Related:

Snow Load

Electrical heat tracing: international harmonization-now and in the future

Heat Tracing Installation

Pipe Heating

Snow & Ice Management

Electrical heat tracing: international harmonization-now and in the future

December 11, 2025
mike@standardsmichigan.com
, , , , , , , ,
No Comments

 

Electrical heat tracing: international harmonization-now and in the future

C. Sandberg

Tyco Thermal Controls

N.R. Rafferty – M. Kleinehanding – J.J. Hernandez

E.I. DuPont de Nemours & Company, Inc 

 

Abstract:  In the past, electrical heat tracing has been thought of as a minor addition to plant utilities. Today, it is recognized as a critical subsystem to be monitored and controlled. A marriage between process, mechanical, and electrical engineers must take place to ensure that optimum economic results are produced. The Internet, expert systems, and falling costs of instrumentation will all contribute to more reliable control systems and improved monitoring systems. There is a harmonization between Europe and North America that should facilitate design and installation using common components. The future holds many opportunities to optimize the design.

CLICK HERE to order complete paper

 


Heat Tracing Installation

Industrial electroheating and electromagnetic processing

Pipe Heating

Heat Tracing

Home Economics

December 10, 2025
mike@standardsmichigan.com
,
No Comments

Today at the usual hour we review the standards, codes, regulations and best practice literature for the safety and sustainability of facilities for teaching skills needed for supporting families.

Inglenook

Salutariness | Fashion

Commercial Kitchens

Life Safety Code

Electrical Safety

Energy Standard for *Sites* and Buildings

Current Issues and Recent Research

What the University of Michigan has done to reduce the life cycle cost of the real assets of educational settlements in the USA

What is Happening to the Family, and Why?

Well Water Quality

December 10, 2025
mike@standardsmichigan.com
,
No Comments

Michigan Central | Water 330 | 2021 Michigan Plumbing Code

Water testing helps ensure that well owners have safe, clean drinking water.

Protect the water quality of your water well

One of the first activities upon waking is interacting with water. Approximately 25% of households in the state of Michigan rely on private well water as their primary drinking water source.  This figure comes from the Michigan Department of Environment, Great Lakes, and Energy (EGLE), which estimates nearly 1.12 million households use private wells out of a total of roughly 4.1–4.6 million households statewide (based on U.S. Census data and population estimates of about 10 million residents, with an average household size of 2.5).

Other sources, such as Michigan State University Extension and the Michigan Water Stewardship Program, report slightly higher figures of 44–45% for overall groundwater reliance (including public systems drawing from aquifers), but the specific share for private household wells aligns with the 25% estimate from EGLE. Rural and southeastern areas of the state have the highest concentrations.

Sunday Brunch

Sunday Brunch Menu | 10:30 – 1:30 AM Heritage Room

Michigan State University Alumni Chapel

Michigan State University | Ingham County

Children’s Rights Management

December 10, 2025
mike@standardsmichigan.com
No Comments

The Icelandic Standards Body has proposed a new ISO standard: Children’s rights management (Page 45).   Public comment will be received until December 10th.

Háskóli Íslands Reykjavík

Icelandic Standards Children’s Rights Management Proposal

(Our response to ANSI at the bottom of this page)

 


December 12, 2025

Dear Madeline, Sara and Rachel:

 

Hope all is well.

Thank you for the opportunity to comment on this proposal.  This statement is our formal recommendation that ANSI find a way for the USA to participate.   If you need this recommendation on our letterhead please let me know.  I am happy to discuss over the phone at your convenience, also.

The recommendations listed below are informed by University of MIchigan and Standards Michigan engagement with ANSI and ISO for the better part of twenty years*.  I, personally, have met with ISO staff several times in Geneva over the past 20 years and have been graciously received.  I admire their processes and integrity of purpose.

Now, after having read the Business Plan, just a few bullet points:

  • The boundaries between children’s rights and education will quickly become fuzzy. The length of the list of incumbent references in the Business Plan reveals a requirement for cross-cultural sensitivities.

  • A US TAG will need substantial funding — usually a high bar for non-profits but less so for for-profit manufacturers, insurance companies, inspection and compliance.  The mortality rate of ANSI TAGs, from our point of view, seems high.

  • Viability of the project – using successful ISO work on Quality Control, for example – will have to track in regulations that fund compliance revenue.  It will take decades, at best half decades, for that to happen.

Looks like a lot of meetings.  We applaud Icelandic leadership.

Hope this helps // Mike

xc: Christine Fischer


 

* List of ISO projects The University of Michigan and Standards Michigan has been involved with since about 2010.

 

ISO/IEC JTC 4 Smart and sustainable cities and communities •  ISO/TC 48 Laboratory equipment • ISO/TC 205 Building environment design • ISO/TC 232 Education and learning services • ISO/TC 260 Human resource management • ISO/TC 267 Facility management •  ISO/TC 292 Security and resilience •  ISO/TC 301 Energy management and energy savings ISO/TC 304 Healthcare organization management • ISO/TC 336 Laboratory design

• INCITS ISO/IEC/JTC electrotechnology committees

Also: See our ABOUT

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content