Apricot Galettes

Loading
loading...

Apricot Galettes

August 19, 2024
[email protected]

No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.

How to Make the Three Most Popular Milk Coffees

August 19, 2024
[email protected]

No Comments

Coffs Harbour

Cowardice Is Killing The West

Australia

Qualified Zone Academy Bonds

August 19, 2024
[email protected]
No Comments

Image Credit: Envato

From the Wikipedia:

Qualified Zone Academy Bonds (QZABs) are a U.S. government debt instrument created by Section 226 of the Taxpayer Relief Act of 1997. It was later revised and regulations may be found in Section 54(E) of the U.S. Code. QZABs allow certain qualified schools to borrow at nominal interest rates (as low as zero percent) for costs incurred in connection with the establishment of special programs in partnership with the private sector…

…Funds can be used for renovation and rehabilitation projects (including energy projects), as well as equipment purchases (including computers). QZABs cannot be used for new building construction. The school district must obtain matching funds from a private-sector/non-profit partner equal to at least 10% of the cost of the proposed project. Information on the two QZAB federal mandates, 10% match and academy, can be obtained by visiting the American Association of School Administrators (AASA) school financing toolkit (see resources below).

…The normal annual allocation each year has been $400,000,000. However, during 2008, 2009, and 2010, the American Recovery & Reinvestment Act (ARRA) increased these amounts to 1.4 billion. The 2011 allocation has returned to the $400,000,000 level. The allocation is divided up by all fifty states and US possessions. QZABs are a temporary program, subject to reauthorization. The last authorization was for the calendar years 2012 and 2013. Authorizations must be used within two years following the year for which they were given, meaning that authorizations given in 2012 must be used by December 31, 2014. As of July 21, 2014, the reauthorization of the QZAB program for years 2014 and 2015 has not been passed by the U.S. Congress.  [Emphasis added*]

From the US Department of Education:

…Schools usually fund large projects, like building renovation or construction, through debt mechanisms such as tax-exempt bonds or loans. School districts must then pay a substantial amount of interest on this debt. For schools serving low income students, QZABs reduce the burden of interest payments by giving financial institutions holding the bonds (or other debt mechanism) a tax credit in lieu of interest. The school district must still pay back the amount of money it initially borrowed, but does not have to pay any interest — typically about half the cost of renovating a school. The credit rate for QZABs sold on a given day is set by the Treasury Department…

With the COVID-19 pandemic disrupting education facility construction projects — and the prospect of at least 10 percent of the built environment rendered redundant for all time — it is enlightening to review the several sources of financing for these construction projects.

We review education industry construction project status and financing at least twice a month during our US Census Bureau Monthly Construction and Finance teleconferences.   See our CALENDAR for the next online meeting; open to everyone.  Use the login credential at the upper right of our home page.

 

* The Rebuild America’s Schools Act of 2019 (H.R. 865/S. 266)

H.R. 865 Rebuild America’s Schools Act of 2019


LEARN MORE:

National Education Foundation 

 

Duncan Stroik Architect

August 18, 2024
[email protected]
, , , ,
No Comments

 

 

“The ideal architect should be a man of letters, a skillful draftsman, a mathematician,

familiar with historical studies, a diligent student of philosophy,  acquainted with music,

not ignorant of medicine, learned in the responses of jurisconsults,

familiar with astronomy and astronomical calculations.”

Vitruvius

Duncan G. Stroik is a practicing architect, author, and Professor of Architecture at the University of Notre Dame specializing in religious and classical architecture.  Gathered here are images from Christ Chapel, Hillsdale College Michigan.  His award-winning work includes the Our Lady of the Most Holy Trinity Chapel in Santa Paula, California, the Shrine of Our Lady of Guadalupe in LaCrosse, Wisconsin, and the Cathedral of Saint Joseph in Sioux Falls, South Dakota.

A frequent lecturer on sacred architecture and the classical tradition, Stroik authored The Church Building as a Sacred Place: Beauty, Transcendence and the Eternal and is the founding editor of Sacred Architecture Journal. He is a graduate of the University of Virginia and the Yale University School of Architecture. Professor Stroik is the 2016 winner of the Arthur Ross Award for Architecture. In 2019, he was appointed to the U.S. Commission of Fine Arts.

Sacred Spaces

“Ten Books on Architecture” 30-20 B.C | Vitruvius

 

Church Facility Management

Observatories & Planetariums

August 16, 2024
[email protected]

No Comments

Galileo Demonstrating His Telescope In 1609

Planetariums in schools and colleges play a central in enhancing astronomy and astrophysics education. They provide immersive experiences that can ignite students’ interest and curiosity about the universe, making complex astronomical concepts more comprehensible and engaging.  Observatories do much that but with direct access to telescopes and other observational tools — frequently away from campus — thus allowing them to engage in hands-on learning and real-time data collection.

Establishing research and teaching programs present special occupancy challenges. The cost of high-quality telescopes and equipment, along with the need for a suitable location with minimal light pollution, can be substantial. Additionally, schools require trained staff to guide students in using the equipment and interpreting data. Weather conditions and geographical location also impact the effectiveness of observatories. Despite these hurdles, the educational value of observatories is immense, providing students with unique opportunities to explore the universe and cultivate a passion for scientific inquiry.

Today we examine both occupancies using our SAFER-SIMPLER-LOWER COST-LONGER LASTING discipline.  Use the login credentials at the upper right of our home page at the usual hour.

Purdue University: Grand Universe planning liftoff in Hamilton County

The International Building Code includes various sections that address safety requirements relevant to observatories and planetariums. Key parts of the IBC that cover these requirements include:

  1. Chapter 3: Use and Occupancy Classification
    • Section 303: Assembly Group A. Planetariums and observatories often fall under Assembly Group A due to their function as places where people gather for educational and entertainment purposes. Specific occupancy types and associated requirements will be detailed here.
  2. Chapter 4: Special Detailed Requirements Based on Use and Occupancy
    • Section 410: Stages, Platforms, and Technical Production Areas. While not specific to planetariums, this section provides guidance on assembly spaces, which may be applicable to the design and safety considerations for the auditorium areas in planetariums.
  3. Chapter 11: Accessibility
    • Section 1103: Scoping Requirements. This section ensures that buildings are accessible to individuals with disabilities, which is crucial for public facilities like planetariums and observatories.
    • Section 1104: Accessible Routes. Requirements for accessible paths to ensure ease of access to and within the facility.
  4. Chapter 12: Interior Environment
    • Section 1203: Ventilation. Adequate ventilation is essential in enclosed spaces like planetariums to ensure air quality and comfort.
    • Section 1205: Lighting. Ensuring appropriate lighting levels and types, which is crucial in areas like control rooms and observational spaces.
  5. Chapter 15: Roof Assemblies and Rooftop Structures
    • Section 1509: Rooftop Structures. Covers the installation and safety of rooftop observatories, which can include structural requirements and access considerations.
  6. Chapter 16: Structural Design
    • Section 1604: General Design Requirements. Ensures that the structure can support both the static and dynamic loads associated with heavy equipment like telescopes.
    • Section 1607: Live Loads. Specific load requirements for observatory equipment and public assembly areas.

These chapters collectively ensure that planetariums and observatories are designed and constructed with safety, accessibility, and functionality in mind. For detailed information, it is recommended to refer to the latest edition of the IBC and consult with a professional knowledgeable in building codes and standards.

Denison receives major gift to transform planetarium


Designing and building a telescope for teaching and light research at a college or university requires a detailed consideration of both the telescope itself and the supporting infrastructure. Here are the central architectural features:

Telescope Structure:

  1. Optical System:
    • Aperture Size: A medium to large aperture (typically 0.5 to 1.5 meters) to gather sufficient light for educational and light research purposes.
    • Type of Telescope: Reflecting (Newtonian, Cassegrain, or Ritchey-Chrétien) or refracting telescope, chosen based on specific educational and research needs.
    • Mount: A sturdy, precise mount (equatorial or alt-azimuth) to support the telescope and ensure smooth tracking of celestial objects.
  2. Enclosure:
    • Dome or Roll-Off Roof: A protective structure to house the telescope, with a retractable roof or dome to allow for unobstructed viewing.
    • Material: Weather-resistant materials such as aluminum or fiberglass, designed to protect the telescope from the elements.
  3. Control Systems:
    • Computerized Controls: For automatic tracking and alignment of celestial objects, often including software for scheduling and managing observations.
    • Remote Operation Capabilities: Allowing students and researchers to control the telescope remotely for data collection and analysis.

Support Infrastructure:

  1. Observation Deck:
    • Viewing Platforms: Elevated platforms around the telescope for students to observe through the telescope and participate in hands-on learning.
    • Safety Features: Railings and non-slip surfaces to ensure safety during nighttime observations.
  2. Control Room:
    • Location: Adjacent to the telescope enclosure, with visibility to the telescope for direct supervision.
    • Equipment: Computers, monitors, data storage, and communication equipment to control the telescope and process observational data.
  3. Classroom and Lab Spaces:
    • Multipurpose Rooms: For lectures, demonstrations, and data analysis related to astronomy and telescope use.
    • Laboratory Equipment: Spectrometers, cameras, photometers, and other instruments for conducting light research and analyzing data collected from the telescope.
  4. Data Processing and Storage:
    • Computing Facilities: High-performance computers and software for analyzing astronomical data.
    • Data Storage Solutions: Secure and scalable storage for large volumes of observational data.
  5. Accessibility Features:
    • Elevators and Ramps: To provide access to all areas of the facility, including the observation deck and control room.
    • Adapted Equipment: Adjustable eyepieces and controls to accommodate users with disabilities.
  6. Lighting:
    • Red Lighting: Low-intensity red lights for night-time use to preserve night vision while allowing safe movement.
    • Exterior Lighting: Shielded lighting around the facility to minimize light pollution and ensure optimal observing conditions.

By integrating these architectural features, a college or university can create a functional and effective observatory that supports both teaching and light research in astronomy.

University of Michigan | Detroit Observatory

Designing and building a planetarium for public use involves careful consideration of various architectural features to ensure functionality, aesthetics, and a positive visitor experience. Here are the central architectural features required:

  1. Dome Structure:
    • Shape and Size: The dome must be a perfect hemisphere to provide an unobstructed view of the projected sky. The size should be large enough to accommodate the intended audience while ensuring good visibility from all seating positions.
    • Material: Typically constructed from aluminum or fiberglass, with an inner surface coated to enhance the projection quality.
  2. Projection System:
    • Projectors: High-resolution digital projectors or traditional optical-mechanical projectors are essential for displaying realistic night skies, astronomical phenomena, and educational shows.
    • Sound System: High-quality surround sound systems to complement visual projections, enhancing the immersive experience.
  3. Seating Arrangement:
    • Tilted Seats: Reclined and tiered seating ensures all viewers have an unobstructed view of the dome.
    • Accessibility: Include spaces for wheelchairs and accessible seating to accommodate all visitors.
  4. Control Room:
    • Location: Typically located at the rear or side of the planetarium for ease of access and control.
    • Equipment: Houses computers, projection equipment, sound systems, and control panels for show operations.
  5. Entrance and Exit Points:
    • Flow Management: Design multiple entrances and exits to manage the flow of visitors efficiently and safely, avoiding congestion.
    • Accessibility: Ensure entrances and exits are accessible for all, including ramps and elevators as needed.
  6. Lobby and Reception Area:
    • Ticketing and Information Desks: Central area for purchasing tickets, obtaining information, and gathering before shows.
    • Displays and Exhibits: Interactive exhibits and displays related to astronomy and science to engage visitors while they wait.
  7. Lighting:
    • Adjustable Lighting: Capability to control lighting levels to facilitate different show requirements, including complete darkness for optimal viewing.
    • Safety Lighting: Emergency lighting and pathway lights for safe movement in low-light conditions.
  8. Climate Control:
    • HVAC Systems: Efficient heating, ventilation, and air conditioning to maintain a comfortable environment for visitors and protect sensitive equipment.
  9. Acoustic Design:
    • Soundproofing: Proper insulation and soundproofing to ensure external noise does not disrupt shows and internal sound is clear.
    • Acoustic Treatment: Materials and design features to enhance sound quality and reduce echoes within the dome.
  10. Educational and Interactive Spaces:
    • Classrooms and Labs: Spaces for educational programs, workshops, and hands-on activities related to astronomy.
    • Interactive Kiosks: Digital kiosks with interactive content to engage visitors in learning about astronomy and space science.
  11. Accessibility Features:
    • Elevators and Ramps: For easy access to different levels of the planetarium.
    • Signage and Information: Clear signage in multiple languages and formats (e.g., braille) to assist all visitors.
  12. Exterior Design:
    • Aesthetic Appeal: The exterior should be inviting and reflect the scientific and educational purpose of the planetarium.
    • Landscaping: Incorporate outdoor spaces, such as gardens or open-air exhibits, that complement the planetarium experience.
  13. Parking and Transportation:
    • Ample Parking: Provide sufficient parking spaces, including spots for buses and accessible parking.
    • Public Transit Access: Ensure the planetarium is accessible via public transportation for the convenience of all visitors.

These architectural features are essential to create a functional, welcoming, and educational environment in a planetarium for public use.

Michigan Technological University | Houghton County

 

 

Engineering a Fair Future: Why we need to train unbiased AI

August 16, 2024
[email protected]
, ,
No Comments

OpenAI was founded in 2015 by a group of technology luminaries, including Elon Musk, Sam Altman, Greg Brockman, Ilya Sutskever, John Schulman, and Wojciech Zaremba. The organization was created with the goal of developing advanced artificial intelligence technologies in a way that is safe and beneficial for humanity.  It is written in multiple programming languages, but the primary language used to build the model is Python but relies on a range of other software tools and frameworks, including TensorFlow and PyTorch for training and deploying the deep learning models, and various libraries for data preprocessing and postprocessing, such as spaCy, NLTK, and Transformers.

Since its founding, OpenAI has grown to become one of the world’s leading AI research organizations, with a team of hundreds of researchers and engineers working on a wide range of projects in areas such as natural language processing, robotics, computer vision, and more.  Much like humans, ChatGPT will likely struggle negotiating “bias”.  As of this posting it seems clear that the algorithm produces answers that are biased toward large central government; most likely the result of not having enough historical input about how a smaller central government is largely responsible for inventing it.

Software Engineering Ethics Education

print(“Python”)

Manifesto for Software Development

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content