Campus Rail Transit

Loading
loading...

Campus Rail Transit

August 22, 2024
mike@standardsmichigan.com
,
No Comments

The West Virginia University PRT (Personal Rapid Transit) system is a unique and innovative form of public transportation that serves the WVU campus and the city of Morgantown, West Virginia. The PRT system consists of a series of automated, driverless vehicles that operate on an elevated track network, providing fast and convenient transportation to key destinations on and around the WVU campus.

The PRT system was first developed in the 1970s as a solution to the growing traffic congestion and parking demand on the WVU campus. The system was designed to be efficient, reliable, and environmentally friendly, and to provide a high-tech, futuristic mode of transportation that would appeal to students and visitors.

The PRT system currently operates five different stations, with stops at key campus locations such as the Mountainlair Student Union, the Engineering Research Building, and the Health Sciences Center. The system is free for all WVU students, faculty, and staff, and also offers a low-cost fare for members of the general public.

The PRT system has been recognized as one of the most advanced and innovative public transportation systems in the world, and has won numerous awards for its design, efficiency, and environmental sustainability. It has also become an iconic symbol of the WVU campus, and is often featured in promotional materials and advertising campaigns for the university.

Standards West Virginia

More

Federal Transit Administration

West Virginia Department of Education: School Transportation

“Evaluation of the West Virginia University Personal Rapid Transit System” | A. Katz and A. Finkelstein (Journal of Transportation Engineering, 1987) This paper evaluates the technical and operational performance of the WVU PRT system based on data collected over a six-year period. The authors identify several issues with the system, including maintenance problems, limited capacity, and difficulties with vehicle docking and undocking.

“Modeling of the West Virginia University Personal Rapid Transit System” by J. Schroeder and C. Wilson (Transportation Research Record, 2002) This paper presents a mathematical model of the WVU PRT system that can be used to analyze its performance and identify potential improvements. The authors use the model to evaluate the impact of various factors, such as station dwell time and vehicle capacity, on the system’s overall performance.

“Evaluating the Effectiveness of Personal Rapid Transit: A Case Study of the West Virginia University System” by K. Fitzpatrick, M. Montufar, and K. Schreffler (Journal of Transportation Technologies, 2013) This paper analyzes the effectiveness of the WVU PRT system based on a survey of users and non-users. The authors identify several challenges facing the system, including low ridership, reliability issues, and high operating costs.

Association for Commuter Transportation: Accreditation Standards

 

Infotech 100

August 21, 2024
mike@standardsmichigan.com
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Energy 400

August 21, 2024
mike@standardsmichigan.com
No Comments

Climate Psychosis | Other Ways of Knowing Climate Change

“The Conquest of Energy” / José Chávez Morado / Universidad Nacional Autónoma de México

We began last year breaking down our coverage of education settlement energy codes and standards into the tranches listed below:

Energy 200: Codes and standards for building premise energy systems.  (Electrical, heating and cooling of the building envelope)

Energy 300: Codes and standards that support the energy systems required for information and communication technology

21 March 2024

Energy 400: Codes and standards for energy systems between campus buildings.  (District energy systems including interdependence with electrical and water supply)

ASHRAE Proposal for a District Cooling Standard

A different “flavor of money” runs through each of these domains and this condition is reflected in best practice discovery and promulgation.  Energy 200 is less informed by tax-free (bonded) money than Energy 400 titles.

Some titles cover safety and sustainability in both interior and exterior energy domains so we simply list them below:

ASME A13.1 – 20XX, Scheme for the Identification of Piping Systems | Consultation closes 6/20/2023

ASME Boiler Pressure Vessel Code

ASME BPVC Codes & Standards Errata and Notices

ASHRAE International 90.1 — Energy Standard for Buildings Except Low-Rise Residential Buildings

Data Center Operations & Maintenance

2018 International Green Construction Code® Powered by Standard 189.1-2017

NFPA 90 Building Energy Code

NFPA 855 Standard for the Installation of Stationary Energy Storage Systems

IEEE Electrical energy technical literature

ASTM Energy & Utilities Overview

Underwriters Laboratories Energy and Utilities

There are other ad hoc and open-source consortia that occupy at least a niche in this domain.  All of the fifty United States and the Washington DC-based US Federal Government throw off public consultations routinely and, of course, a great deal of faculty interest lies in research funding.

Please join our daily colloquia using the login credentials at the upper right of our home page.

References: Energy 400

More

United States Department of Energy

International Energy Agency World Energy Outlook 2022

International Standardization Organization

ISO/TC 192 Gas Turbines

Energy and heat transfer engineering in general

Economics of Energy, Volume: 4.9 Article: 48 , James L. Sweeney, Stanford University

Global Warming: Scam, Fraud, or Hoax?, Douglas Allchin, The American Biology Teacher (2015) 77 (4): 309–313.

Helmholtz and the Conservation of Energy, By Kenneth L. Caneva, MIT Press

International District Energy Association Campus Energy 2023 Conference: February 29-March 2 (Grapevine Texas)

NRG Provides Strategic Update and Announces New Capital Allocation Framework at 2023 Investor Day

Evaluation of European District Heating Systems for Application to Army Installations in the United States

Gallery: Other Ways of Knowing Climate Change

Allston District Energy

Campus Bulk Electrical Distribution

Interdependent Water & Electricity Networks

Interoperability of Inverter-Based Resources

Gallery: Campus Steam Tunnels

Electrical Resource Adequacy

 

From our video archive:


 

Hayward Street Geothermal Cooling $20M

August 21, 2024
mike@standardsmichigan.com
,
No Comments

ACTION REQUEST: $20M

Leinweber Computer and Information Science

Leinweber Foundation Gift

Business & Finance: We Make Blue Go

Geothermal cooling plants have far fewer moving parts and thus pay for themselves by combining immediate energy savings, revenue from excess energy or services, government incentives, and long-term operational efficiency. “Classical” payback period depends on factors like the plant’s scale and available incentives through DTE Energy.

1. Energy Cost Savings

  • Reduced Operating Costs: Geothermal systems use the relatively constant temperature of the earth to provide heating and cooling, which can be much more energy-efficient than traditional HVAC systems. This efficiency leads to lower utility bills for the facility, resulting in significant cost savings over time.
  • Lower Maintenance Costs: Geothermal systems generally have fewer moving parts than conventional systems, leading to lower maintenance and repair costs.

2. Revenue Generation

  • Selling Excess Energy: In some cases, geothermal plants can produce more energy than needed for cooling. This excess energy can be sold back to the grid or used for other purposes, providing an additional revenue stream.
  • Leasing and Service Agreements: Some facilities enter into agreements with nearby buildings or industries to provide geothermal cooling services, generating income.

3. Government Incentives and Subsidies

  • Tax Credits and Rebates: Many governments offer financial incentives, such as tax credits, grants, and rebates, for the installation and operation of geothermal systems. These incentives can significantly reduce the upfront costs and improve the payback period.
  • Renewable Energy Certificates(RECs): In some regions, geothermal plants can earn RECs for generating renewable energy. These certificates can be sold to other companies to offset their carbon emissions, generating additional income.

4. Environmental and Social Benefits

  • Carbon Credits: By reducing greenhouse gas emissions compared to traditional systems, geothermal plants can earn carbon credits, which can be sold or traded in carbon markets.
  • Sustainability Branding: Businesses that use geothermal cooling can market themselves as environmentally friendly, potentially attracting more customers or tenants, which indirectly supports the plant’s financial viability.

5. Long-Term Investment

  • Long Lifespan: Geothermal systems typically have a long lifespan (20-50 years), allowing for a long-term return on investment. While the initial capital costs are high, the system’s durability and low operating costs contribute to a favorable payback over time.
  • Resilience Against Energy Price Volatility: Geothermal systems provide protection against fluctuating energy prices, offering stable and predictable costs, which is financially beneficial over the long term.

6. Financing Models

  • Power Purchase Agreements (PPAs): Some geothermal plants are financed through PPAs, where a third party finances the installation and the facility pays for the energy produced, typically at a lower rate than conventional energy sources.
  • Energy Service Companies (ESCOs): These companies can finance, install, and maintain geothermal systems, with the facility paying for the service over time, usually based on the energy savings achieved.

7. Scalability and Integration

  • Integration with Other Renewable Systems: Geothermal cooling can be part of a broader renewable energy strategy, integrating with solar or wind power to further enhance efficiency and reduce costs, improving the overall financial outlook.

Earth Energy Systems

Marina & Boatyard Electrical Safety

August 20, 2024
mike@standardsmichigan.com

No Comments

Rowing at the 2024 Summer Olympics

“The Biglin Brothers Racing| Thomas Eakins (1872)

Rowing competition in the 2024 Olympics inspires a  revisit of NFPA 303: Fire Protection Standard for Marinas and Boatyards.  Apart from athletic competition, many colleges, universities and trade schools with academic programs are responsible for safety of facilities located on fresh and saltwater shorelines.  Other nations refer to best practice discovered and applied in the United States.   Keep in mind that, unlike other nations, the standard of care for electrical safety in the United States is driven primarily by the fire safety community.   This happens because public safety leadership falls upon the local Fire Marshall who has a budget that is widely understand and generally supported.

From the NFPA 303 scope statement:

 This standard applies to the construction and operation of marinas, boatyards, yacht clubs, boat condominiums, docking facilities associated with residential condominiums, multiple-docking facilities at multiple-family residences, and all associated piers, docks, and floats.

This standard also applies to support facilities and structures used for construction, repair, storage, hauling and launching, or fueling of vessels if fire on a pier would pose an immediate threat to these facilities, or if a fire at a referenced facility would pose an immediate threat to a docking facility.

This standard applies to marinas and facilities servicing small recreational and commercial craft, yachts, and other craft of not more than 300 gross tons.

This standard is not intended to apply to a private, noncommercial docking facility constructed or occupied for the use of the owners or residents of the associated single-family dwelling.

No requirement in this standard is to be construed as reducing applicable building, fire, and electrical codes.

The standard of care for facilities owned by educational institutions is not appreciably different from the standard of care for any other Owner except some consideration should be given to the age and training of most of the occupants — students, of course — who are a generally transient population.  Some research projects undertaken on university-owned facilities are also subject to the local adaptions of NFPA 303.  The current version of NFPA 303 is linked below:

FREE ACCESS: NFPA 303

 

Boathouse Row / Philadelphia

The 2021 Edition is the current edition and the next edition will be the 2025 revision.  Click on the link below to read what new ideas were running through the current edition; mostly electrical that are intended to correlate with National Electrical Code Article 555 and recent electrical safety research*:

NFPA 303 Public Input Report for the 2021 Edition

Public input closing date for the 2025 Edition is June 1, 2023.   

You may submit comment directly to NFPA on this and/or any other NFPA consensus product by CLICKING HERE.  You will need to set up a (free) account.   NFPA 303 document is also on the standing agenda of our 4 times monthly collaboration with the IEEE Education & Healthcare Facilities Committee.  See our CALENDAR for the next online colloquium; open to everyone.

Michigan Technological University

Issue: [16-133]

Category: Electrical, #SmartCampus, Facility Asset Management

Colleagues: Mike Anthony,  Jim Harvey


LEARN MORE:

* Marina Risk Reduction

NFPA 70 National Electrical Code (Article 555)

Examining the Risk of Electric Shock Drowning (ESD) As a Function of Water Conductivity

Apricot Galettes

August 19, 2024
mike@standardsmichigan.com

No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

How to Make the Three Most Popular Milk Coffees

August 19, 2024
mike@standardsmichigan.com

No Comments

Coffs Harbour

Cowardice Is Killing The West

Australia

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content