National Electrical Definitions

Loading
loading...

National Electrical Definitions

March 10, 2025
[email protected]
,
No Comments

NFPA Glossary of Terms

International Building Code Chapter 2: Definitions

International Electrotechnical Commission: Electropedia

Because electrotechnology changes continually, definitions (vocabulary) in its best practice literature changes continually; not unlike any language on earth that adapts to the moment and place.

The changes reflect changes in technology or changes in how the technology works in practice; even how the manufacturers create adaptations to field conditions by combining functions.   Any smart electrical component has a digital language embedded in it, for example.

Consider the 2023 National Electrical Code.  Apart from many others the NEC will contain a major change to Article 100 (Definitions); the subject of elevated debate over the past three years.

When we refer “language” we must distinguish between formal language, informal language, colloquial language and dialect which may differ the language spoken, language written at the office and language used on the job site.  “Terms of art”

2026 National Electrical Code | CMP-1 Second Draft Report 

FREE ACCESS: 2020 National Electrical Code (NFPA 70)

2023 NEC Public Input Report CMP-1 (868 pages)

2023 NEC Second Draft Public Comment Report (914 pages)

Are these terms (or, “terms of art”) best understood in context (upstream articles in Chapters 4 through 8) — or should they be adjudicated by the 14 Principals of Code Making Panel 1?   The answer will arrive in the fullness of time.   Many changes to the National Electrical Code require more than one cycle to stabilize.

Code Making Panel 1 has always been the heaviest of all NEC panels.  As explained n our ABOUT, the University of Michigan held a vote in CMP-1 for 20+ years (11 revision cycles) before moving to the healthcare facilities committee for the IEEE Education & Healthcare Facilities Committee.  Standards Michigan continues its involvement on behalf of the US education facility industry — the second largest building construction market.  There is no other pure user-interest voice on any technical committee; although in some cases consulting companies are retained for special purposes.

To serve the purpose of making NFPA 70 more “useable” we respect the Standards Council decision to make this change if it contributes to the viability of the NFPA business model.  We get to say this because no other trade association comes close to having as enduring and as strong a voice:  NFPA stands above all other US-based SDO’s in fairness and consideration of its constituency.  The electrical safety community in the United States is a mighty tough crowd.

If the change does not work, or work well enough, nothing should prohibit reversing the trend toward “re-centralizing” — or “de-centralizing” the definitions.

Public comment on the First Draft of the 2026 Edition will be received until August 28, 2024. 

Technical Committees meet during the last half of October to respond to public comment on the First Draft of the 2026 National Electrical Code. 

Electrical Contractor: Round 1 of the 2023 NEC: A summary of proposed changes (Mark Earley, July 15, 2021)

Electrical Contractor: 2023 Code Article and Definition Revisions: Accepting (NEC) change, part 2 (Mark Earley, March 15, 2022)

Use Case: Julia Programming Language for Artificial Intelligence

March 10, 2025
[email protected]
, ,
No Comments

Julia is a programming language that has gained popularity in the field of artificial intelligence (AI) and scientific computing for several reasons.

High Performance: Julia is designed to be a high-performance language, often compared to languages like C and Fortran. It achieves this performance through just-in-time (JIT) compilation, allowing it to execute code at speeds close to statically compiled languages. This makes Julia well-suited for computationally intensive AI tasks such as numerical simulations and deep learning.

Ease of Use: Julia is designed with a clean and expressive syntax that is easy to read and write. It feels similar to other high-level languages like Python, making it accessible to developers with a background in Python or other scripting languages.

Multiple Dispatch: Julia’s multiple dispatch system allows functions to be specialized on the types of all their arguments, leading to more generic and efficient code. This feature is particularly useful when dealing with complex data types and polymorphic behavior, which is common in AI and scientific computing.

Rich Ecosystem: Julia has a growing ecosystem of packages and libraries for AI and scientific computing. Libraries like Flux.jl for deep learning, MLJ.jl for machine learning, and DifferentialEquations.jl for solving differential equations make it a powerful choice for AI researchers and practitioners.

Interoperability: Julia offers excellent interoperability with other languages, such as Python, C, and Fortran. This means you can leverage existing code written in these languages and seamlessly integrate it into your Julia AI projects.

Open Source: Julia is an open-source language, which means it is freely available and has an active community of developers and users. This makes it easy to find resources, documentation, and community support for your AI projects.

Parallel and Distributed Computing: Julia has built-in support for parallel and distributed computing, making it well-suited for tasks that require scaling across multiple cores or distributed computing clusters. This is beneficial for large-scale AI projects and simulations.

Interactive Development: Julia’s REPL (Read-Eval-Print Loop) and notebook support make it an excellent choice for interactive data analysis and experimentation, which are common in AI research and development.

While Julia has many advantages for AI applications, it’s important to note that its popularity and ecosystem continue to grow, so some specialized AI libraries or tools may still be more mature in other languages like Python. Therefore, the choice of programming language should also consider the specific requirements and constraints of your AI project, as well as the availability of libraries and expertise in your development team.

We present a use case below:

Université Sorbonne Paris Nord

A Julia Module for Polynomial Optimization with Complex Variables applied to Optimal Power Flow

 

Julie Sliwak – Lucas Létocart | Université Sorbonne Paris Nord

Manuel Ruiz | RTE R&D, Paris La Défense

Miguel F. Anjos | University of Edinburgh

 

ABSTRACT.  Many optimization problems in power transmission networks can be formulated as polynomial problems with complex variables. A polynomial optimization problem with complex variables consists in optimizing a real-valued polynomial whose variables and coefficients are complex numbers subject to some complex polynomial equality or inequality constraints. These problems are usually directly expressed with real variables. In this work, we propose a Julia module allowing the representation of polynomial problems in their original complex formulation. This module is applied to power system optimization and its generic design enables the description of several variants of power system problems. Results for the Optimal Power Flow in Alternating Current problem and for the Preventive-Security Constrained Optimal Power Flow problem are presented.

University of Edinburg

CLICK HERE to order complete paper


Design Standard Readability

March 10, 2025
[email protected]
, ,
No Comments

Fry readability formula

How Consistent Are the Best-Known Readability Equations in Estimating the Readability of Design Standards?

Shixiang Zhou & Heejin Jeong
Industrial and Operations Engineering Department, University of Michigan, Ann Arbor, MI, USA
Transportation Research Institute Driver Interface Group
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA

 

Abstract.  Research problem: Readability equations are widely used to compute how well readers will be able to understand written materials. Those equations were usually developed for nontechnical materials, namely, textbooks for elementary, middle, and high schools. This study examines to what extent computerized readability predictions are consistent for highly technical material – selected Society of Automotive Engineers (SAE) and International Standards Organization (ISO) Recommended Practices and Standards relating to driver interfaces. Literature review: A review of original sources of readability equations revealed a lack of specific criteria in counting various punctuation and text elements, leading to inconsistent readability scores. Few studies on the reliability of readability equations have identified this problem, and even fewer have systematically investigated the extent of the problem and the reasons why it occurs.  Research questions:

(1) Do the most commonly used equations give identical readability scores?
(2) How do the scores for each readability equation vary with readability tools?
(3) If there are differences between readability tools, why do they occur?
(4) How does the score vary with the length of passage examined?

Method: Passages of varying lengths from 12 selected SAE and ISO Recommended Practices and Standards were examined using five readability equations (Flesch-Kincaid Grade Level, Gunning Fog Index, SMOG Index, Coleman-Liau Index, and Automated Readability Index) implemented five ways (four online readability tools and Microsoft Word 2013 for Windows). In addition, short test passages of text were used to understand how different readability tools counted text elements, such as words and sentences. Results and conclusions: The mean readability scores of the passages from those 12 SAE and ISO Recommended Practices and Standards ranged from the 10th grade reading level to about 15th. The mean grade reading levels computed across the websites were: Flesch-Kincaid 12.8, Gunning Fog 15.1 SMOG 12.6, Coleman-Liau 13.7, and Automated Readability Index 12.3. Readability score estimates became more consistent as the length of the passage examined increased, with no noteworthy improvements beyond 900 words. Among the five readability tools, scores typically differed by two grade levels, but the scores should have been the same. These differences were due to how compound and hyphenated words, slashes, numbers, abbreviations and acronyms, and URLs were counted, as well other punctuation and text elements. These differences occurred because the sources for these equations often did not specify how to score various punctuation and text elements. Of the tools examined, the authors recommend Microsoft Word 2013 for Windows if the Flesch-Kincaid Grade Level is required.

 

Energy Savings Due to Daylight Saving in Mexico

March 9, 2025
[email protected]
No Comments

https://www.facebook.com/photo/?fbid=965536199038787&set=a.324360603156353

“The Conquest of Energy” | José Chávez Morado

Energy Savings Due to Daylight Saving in Mexico; Case Study: Buildings and Facilities of CU-UNAM

Andrea Fernanda Rivera-Castro, et. al

This paper presents an analysis of energy savings in typical university campus buildings due to Daylight Saving Time in Mexico. The electricity demand load profiles are analyzed in five facilities of the National Autonomous University of Mexico central campus. Each facility presents different demand characteristics according to its usage. Demand data have been obtained through electrical measurements using Survalent ONE SCADA system®. The last week winter period demand profile compared to the first week summer period demand profile are shown and analyzed. Results have shown DST effects on energy consumption in university facilities. With these results, it is also possible to develop decision-making programs to drive energy efficient plans in university campus. In addition, this information can be used to promote efficient and clean energy micro grids. Including ocean energy generation for isolated communities.


Global Positioning System: A Generation of Service to the World

March 8, 2025
[email protected]
, , ,
No Comments

Citizens of the Earth depend upon United States leadership in this technology for several reasons:

Development: The GPS was originally developed by the US Department of Defense for military purposes, but it was later made available for civilian use. The US has invested heavily in the development and maintenance of the system, which has contributed to its leadership in this area.

Coverage: The GPS provides global coverage, with 24 satellites orbiting the earth and transmitting signals that can be received by GPS receivers anywhere in the world. This level of coverage is unmatched by any other global navigation system.

Accuracy: The US has worked to continually improve the accuracy of the GPS, with current accuracy levels estimated at around 10 meters for civilian users and even higher accuracy for military users.

Innovation: The US has continued to innovate and expand the capabilities of the GPS over time, with newer versions of the system including features such as higher accuracy, improved anti-jamming capabilities, and the ability to operate in more challenging environments such as indoors or in urban canyons.

Collaboration: The US has collaborated with other countries to expand the reach and capabilities of the GPS, such as through the development of compatible navigation systems like the European Union’s Galileo system and Japan’s QZSS system.

United States leadership in the GPS has been driven by a combination of investment, innovation, collaboration, and a commitment to improving the accuracy and capabilities of the system over time.

Timing Applications: GPS.GOV

Suggested Functional Specifications for a GPS-Synchronized Clock System using Network Time Protocol and Power over Ethernet

Construction Specifications for Exterior Clocks

Seamless positioning system using GPS and beacons for community service robot

Global Positioning System: Monitoring the Fuel Consumption in Transport Distribution

Horologiorum

March 8, 2025
[email protected]
, , , , , , ,
No Comments

“Gather Ye Rosebuds While Ye May” John Herrick | John William Waterhouse

“The Sound of Noon” on the Charlottesville Campus

University of New Hampshire

Westminster Chimes at Rockefeller Memorial Chapel

University of Michigan

Hayes Clock Tower

Ars Sonora Bell Tower

Western University Ontario

Trinity College

Mississippi State University

南洋華僑中學

Shelton State Community College Alabama

Winona State University

Oklahoma City Community College

University of Illinois

Bucknell University Pennsylvania

St. Francis Xavier College Missouri

University of Mississippi

University of North Dakota

University of Montana

Gardner-Webb University North Carolina

University of California Berkeley

Auburn University Alabama

 

Indiana University

Sam Houston State University Texas

Otago University New Zealand

Hillsdale College Michigan


More

ISO 8601:2004 Data elements and interchange formats — Information interchange — Representation of dates and times

National Institute of Science & Technology: Time and Frequency

National Institute of Science & Technology: Current Reliability of the WWVB Time Code

NFPA 72 National Fire Alarm & Signaling Code Chapter 23: Protected Premises Alarm and Signaling Systems

Uniform Swimming Pool, Spa & Hot Tub Code

March 7, 2025
[email protected]
,
No Comments
water

“The Bathing Pool” / Hubert Robert (French, 1733–1808) / Gift of J.P. Morgan

2024 Uniform Swimming Pool, Spa and Hot Tub Code

READ-ONLY ACCESS

The IAPMO code development process is one of the best in the land.  Its Read-Only Access — needed for light research — is also the best in the land; unlike other ANSI accredited standards developers (who shall be un-named).   The current edition is dated 2024, with the 2027 revision accepted public input until March 3, 2025 according the schedule linked below:

2027 USPSHTC Code Development Calendar

Related:

What are Plumbing Codes?

Uniform Plumbing Code

Coronavirus in Plumbing Systems

Structural Design

March 6, 2025
[email protected]
No Comments

Update: MARCH 6, 2025

Snow Load Calculator

Design of Wood Structures

Call for public proposals for the 2028 edition

 


CLICK ON IMAGE

Every earthquake, tornado, hurricane, flood and ice storm inspires a revisit of standards action and building code development that we track on behalf of the US education facilities industry.  It is wise to keep pace with the full span of American Society of Civil Engineers (ASCE) regulatory product catalog because so much of the fundamental characteristics of college and university campuses–waterworks, roads, structures, energy etc.–is governed by the safety and sustainability concepts that vary from state-to state.

We follow a number of ASCE titles; among them ASCE/SEI 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures which describes the means for determining dead, live, soil, flood, tsunami, snow, rain, atmospheric ice, earthquake, and wind loads, and their combinations for general structural design. 

Free Access to the 2002 Edition

CLICK HERE to access them both.  You will need to register as a public commenter.

Background & Perspective:

As covered in previous posts, we pay special attention to how occupancy classifications are defined in the International Building Code and ASCE/SEI-7 because those definitions inform how the decisions of academic unit programmers, facility planners/managers and building design professionals contribute to our lower cost agenda.

Throughout 2019-2021  we will be following development of the next edition of the International Existing Building Code (IEBC) and its companion titles — in large measure a companion document for the safety concepts found in ASCE SEI-7 — because a great deal of construction activity in education facilities involves renovated space.

Stanford University Medical Center / Photo Credit: Perkins -Eastman

The revision cycle for the 2022 edition started earlier this year (see previous posts) and the meetings of various SEI-7 technical committees responding to public input is proceeding according to the schedule linked below:

SEI7-16 2022 REVISION CALENDAR

There are no open public consultations at this time (March 6, 2025).


Keep in mind that owing to weather conditions interrupting committee member travels, and the present COVID-19 pandemic contingency, some of the meetings may be cancelled or conducted online.  In any case,  as technical committees meet throughout 2019 exposure drafts open to public comment public will be uploaded to the ASCE public commenting facility:

More information about participating in the ASCE standards development process for this and other documents may be obtained from Jennifer Groupil ([email protected]).

Moscow State University

Given that it is a relatively rarified standards space,  we group our tracking, discussion and prospective advocacy in the ASCE standards suite during our Construction Spend colloquia.  See our CALENDAR for the next online teleconference; open to everyone.

 

Issue: [13-68]

Category: Architectural, Civil Engineering, Structural Engineering

Colleagues: Mike Anthony, Jack Janveja, Jerry Schulte, Patti Spence

Archive / ASCE


More

Public Access to Superceded Editions of ASCE SE-7

Tallest Educational Buildings in the World

National Council of Structural Engineers Associations

National Design Specification for Wood Construction

March 6, 2025
[email protected]
No Comments

“The Country School” 1871 Winslow Homer

The 2024 National Design Specification for Wood Construction was developed by AWC’s Wood Design Standards Committee and approved as a standard by ANSI (American National Standards Institute) on October 16, 2023.  The 2024 NDS is referenced in the 2024 International Building Code.

FREE ACCESS

International Code Council Mass Timber: Outcomes of the ICC Tall Wood Ad Hoc Committee

The Old Schoolhouse | Flint Creek Oklahoma

Related:

Researchers Make Wood Stronger than Steel

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content