This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.
The organization primarily responsible for measuring time is the International Bureau of Weights and Measures located in Parc de Saint-Cloud, France. The BIPM oversees the International System of Units which is the most widely used system for measuring time, as well as other physical quantities such as length, mass, and electric current.
This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.
This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.
Abstract: Uniform technical minimum requirements for the interconnection, capability, and lifetime performance of inverter-based resources interconnecting with transmission and sub-transmission systems are established in this standard. Included in this standard are performance requirements for reliable integration of inverter-based resources into the bulk power system, including, but not limited to, voltage and frequency ride-through, active power control, reactive power control, dynamic active power support under abnormal frequency conditions, dynamic voltage support under abnormal voltage conditions, power quality, negative sequence current injection, and system protection. This standard also applies to isolated inverter-based resources that are interconnected to an ac transmission system via dedicated voltage source converter high-voltage direct current (VSC-HVDC) transmission facilities; in these cases, the standard applies to the combination of the isolated IBRs and the VSC-HVDC facility, and not to an isolated inverter-based resource (IBR) on its own.
Scope: This standard establishes the required interconnection capability and performance criteria for inverter-based resources interconnected with transmission and sub-transmission systems.10, 11, 12 Included in this standard are performance requirements for reliable integration of inverter-based resources into the bulk power system, including, but not limited to: voltage and frequency ride-through, active power control, reactive power control, dynamic active power support under abnormal frequency conditions, dynamic voltage support under abnormal voltage conditions, power quality, negative sequence current injection, and system protection. This standard shall also be applied to isolated inverter-based resources that are interconnected to an ac transmission system via a dedicated voltage source converter high-voltage direct current (VSC-HVDC) transmission facility; in these cases, the standard shall apply to the combination of the isolated IBR and the VSC-HVDC facility and shall not apply to the isolated IBR unless they serve as a supplemental IBR device that is necessary for the IBR plant with VSC-HVDC to meet the requirements of this standard at the reference point of applicability.
Purpose: This standard provides uniform technical minimum requirements for the interconnection, capability, and performance of inverter-based resources interconnecting with transmission and sub-transmission systems.
The European Standardization System and the International Electrotechnical Commission standardization system are two distinct systems that serve different geographical areas and have different scopes, although they share some similarities. Here are some key differences between the two systems:
On the other hand, the IEC standardization system has a global scope and develops standards for electrotechnical and electronic technologies that are used worldwide. The IEC is a non-profit organization based in Switzerland, and its standards are adopted by countries around the world, including Europe.
The IEC standardization process involves the development of International Standards (ISs) and other types of publications, such as Technical Reports (TRs) and Technical Specifications (TSs). The IEC standards are developed by technical committees consisting of experts from IEC member countries, including industry representatives, academics, and other stakeholders.
The IEC standardization system focuses specifically on electrotechnical and electronic technologies, including areas such as electrical safety, electromagnetic compatibility, electrical and electronic equipment, renewable energy, smart grids, and communication systems, among others.
IEC International Standards (ISs), on the other hand, are voluntary standards that are not legally binding. However, they are widely recognized and adopted by many countries as best practices and are often referenced in national regulations and procurement requirements.
Readings:
This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwB pic.twitter.com/GkAXrHoQ9T
— USPTO (@uspto) July 13, 2023
Standards Michigan Group, LLC
2723 South State Street | Suite 150
Ann Arbor, MI 48104 USA
888-746-3670