Dutch Institute for Fundamental Energy Research

Loading
loading...

Dutch Institute for Fundamental Energy Research

August 14, 2024
mike@standardsmichigan.com
,
No Comments

“DIFFER” is a research institute domiciled at TU/e that is focused on advancing the development of sustainable energy technologies, such as fusion energy and solar fuels. It conducts fundamental research on plasma physics and materials science to understand the behavior of matter at extremely high temperatures and under extreme conditions.

DIFFER also collaborates with universities, research institutions, and industry partners to translate their research into practical applications. The institute’s ultimate goal is to develop new and innovative solutions to meet the world’s growing demand for energy while reducing greenhouse gas emissions and environmental impact.  

Among its findings and recommendations: “Electrochemical Production of Ammonia from Renewable Energy: A Thermodynamic Analysis” published in the Journal of The Electrochemical Society in 2018, which evaluated the thermodynamic feasibility of using renewable energy to produce ammonia, an important fertilizer, through electrochemical processes.

N.B. Ammonia can be deployed for energy conservation purposes in various ways, such as:

  1. Energy storage: Ammonia can be used as a means of storing energy from renewable sources, such as wind and solar power, in the form of chemical energy. This stored energy can be released by converting ammonia back into electricity through fuel cells or by burning it in a combustion engine.
  2. Power generation: Ammonia can be used directly as a fuel in combustion engines or turbines to generate electricity, without emitting greenhouse gases or other harmful pollutants.
  3. Heating and cooling: Ammonia can be used as a refrigerant or heat transfer fluid in industrial processes, air conditioning systems, or district heating networks, reducing the energy required for cooling and heating.
  4. Fuel for transportation: Ammonia can be used as a fuel for ships, trains, or other heavy-duty vehicles, reducing emissions of greenhouse gases and other pollutants.

However, it is worth noting that the deployment of ammonia for energy conservation purposes requires the development of suitable technologies for its production, transportation, and storage, as well as the necessary infrastructure to support its use.

Nederland

World Soil Museum

August 13, 2024
mike@standardsmichigan.com
, , , , , ,
No Comments

Nederland

 

 

 

 

 

 

 

 

 

 

 

 

 

The World Soil Museum hosts a range of educational programs and workshops for students, researchers, and other visitors who are interested in learning more about soil science. These programs cover topics such as soil classification, soil management, and soil conservation, and they are designed to help people understand the vital role that soils play in supporting agriculture, ecosystems, and human societies around the world.

 

Getting to Know Your Soil

Weather Resilience

August 12, 2024
mike@standardsmichigan.com
No Comments

During today’s session we approach disaster avoidance, management and recovery literature from a different point of view than our customary approach — i.e. what happens when, a) there is failure to conform to the standard, b) there is no applicable standard at all.  This approach necessarily requires venturing into the regulatory and legal domains.


We will confine our approach to the following standards development regimes:

  1. De facto standards: These are standards that are not officially recognized or endorsed by any formal organization or government entity, but have become widely adopted by industry or through market forces. Examples include the QWERTY keyboard layout and the MP3 audio format.
  2. De jure standards: These are standards that are formally recognized and endorsed by a government or standard-setting organization. Examples include the ISO 9000 quality management standard and the IEEE 802.11 wireless networking standard.
  3. Consortium standards: These are standards that are developed and maintained by a group of industry stakeholders or organizations, often with the goal of advancing a particular technology or product. Examples include the USB and Bluetooth standards, which are maintained by the USB Implementers Forum and the Bluetooth Special Interest Group, respectively.
  4. Open standards: These are standards that are freely available and can be used, implemented, and modified by anyone without restriction. Examples include the HTML web markup language and the Linux operating system.
  5. Proprietary standards: These are standards that are owned and controlled by a single organization, and may require payment of licensing fees or other restrictions for use or implementation. Examples include the Microsoft Office document format and the Adobe PDF document format.
  6. ANSI accredited standards developers with disaster management catalogs

We may have time to review State of Emergency laws on the books of most government agencies; with special attention to power blackout disasters.

Use the login credentials at the upper right of our home page.

Case Briefings


Managing Disaster with Blockchain, Cloud & IOT

Readings / Emergency Telecommunication Plans

Homeland Power Security

Vacation Bible School

August 12, 2024
mike@standardsmichigan.com

No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

LIncoln Weather and Climate

August 12, 2024
mike@standardsmichigan.com

No Comments

Nebraska and U.S. Tornadoes

Climate Psychosis

Nebraska

Storm Shelters

Electrical Safety in Academic Laboratories

August 12, 2024
mike@standardsmichigan.com
, ,
No Comments

Nikola Tesla, with his equipment / Credit: Wellcome Library, London

We collaborate closely with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in European and American time zones.  Risk managers, electrical safety inspectors, facility managers and others are welcomed to click into those teleconferences also.  We expect that concepts and recommendations this paper will find their way into future revisions of US and international electrical safety codes and standards.  There is nothing stopping education facility managers from applying the findings immediately.

College of Engineering and Technology, Bhubaneswar India


Electrical Safety of Academic Laboratories | 2019-PSEC-0204

Presented at the 55th IEEE Industrial Applications Society I&CPS Technical Conference | Calgary, Alberta Canada | May 6-9, 2019

Ω

Rodolfo Araneo, University of Rome “La Sapienza” | rodolfo.araneo@ieee.org

Payman Dehghanian, George Washington University | payman@gwu.edu

Massimo Mitolo, Irvine Valley College | mitolo@ieee.org

 

Abstract. Academic laboratories should be a safe environment in which one can teach, learn, and conduct research. Sharing a common principle, the prevention of potential accidents and imminent injuries is a fundamental goal of laboratory environments. In addition, academic laboratories are attributed the exceptional responsibility to instill in students the culture of the safety, the basis of risk assessment, and of the exemplification of the prudent practice around energized objects.  Undergraduate laboratory assignments may normally be framed based upon the repetition of established experiments and procedures, whereas, academic research laboratories may involve new methodologies and/or apparatus, for which the hazards may not be completely known to the faculty and student researchers. Yet, the academic laboratory should be an environment free of electrical hazards for both routine experiments and research endeavors, and faculty should offer practical inputs and safety-driven insights to academic administration to achieve such a paramount objective. In this paper, the authors discuss the challenges to the electrical safety in modern academic laboratories, where users may be exposed to harmful touch voltages.

I. INTRODUCTION

A. Electricity and Human Vulnerabilities

B. Electrical Hazards in Academic Laboratories

II. ELECTRICAL SEPARATION

III. SAFETY IN ACADEMIC LABORATORIES WITH VARIABLE FREQUENCY DRIVES

IV. ELECTRICAL SAFETY IN ACADEMIC LIGHTING LABORATORIES

V. ACADEMIC RESEARCH LABORATORIES

A. Basic Rules of Engagement

B. Unidirectional Impulse Currents

VI. HAZARDS IN LABORATORIES DUE TO ELECTROMAGNETIC FIELD EXPOSURE

VII. WARNING SIGNS AND PSYCHOLOGICAL PERCEPTION OF DANGER

VIII. CONCLUSION

Safety is the most important practice in an academic laboratory as “safety and productivity are on the same team”.  Electrical measurement and electrically-powered equipment of various brands and models are common in both teaching and research laboratories, highlighting the need to maintaining them continuously in an electrically-safe status.  Annual reports on the occurrence of electrical hazards (i.e. shocks and injuries) in academic laboratory environments primarily discover the (i) lack of knowledge on using the electrical equipment, (ii) careless use of the energized electric facilities, and (iii) faulty electrical equipment or cords. The above does call for the establishment of safety-driven codes, instructions, and trainings for the academic personnel working with or near such devices for teaching, learning, experiments, and research. This paper provided background information on the concept of electrical safety in the academic laboratories, presented the safety challenges of modern academic laboratories, and offered solutions on how enhance the lab environment and research personnel safety awareness to avoid and control electrical hazards.

Issue: [19-129]

Category: Electrical, Facility Asset Management, Fire Safety, International

Colleagues: Mike Anthony, Rodolfo Araneo, Payman Dehghanian, Jim Harvey, Massimo Mitolo, Joe Tedesco

Related IEEE Research:

Laboratory Safety and Ethics

Strengthening and Upgrading of Laboratory Safety Management Based on Computer Risk Identification

Study on the Operators’ Attention of Different Areas in University Laboratories Based on Eye Movement Tracking Technology

Critical Study on the feasiblity of Smart Laboratory Coats

Design of Safety Monitoring System for Electrical Laboratory in Colleges and Universities under the Background of Informatization

Clean Environment Tools Design For Smart Campus Laboratory Through a Global Pandemic

Design of Laboratory Fire Safety Monitoring System


Storm Shelters

August 12, 2024
mike@standardsmichigan.com
, , ,
No Comments

2024 GROUP A PROPOSED CHANGES TO THE I-CODES

Latest News and Documents

“Landscape between Storms” 1841 Auguste Renoir

 

When is it ever NOT storm season somewhere in the United States; with several hundred schools, colleges and universities in the path of them? Hurricanes also spawn tornadoes. This title sets the standard of care for safety, resilience and recovery when education community structures are used for shelter and recovery.  The most recently published edition of the joint work results of the International Code Council and the ASCE Structural Engineering Institute SEI-7 is linked below:

2020 ICC/NSSA 500 Standard for the Design and Construction of Storm Shelters.

Given the historic tornados in the American Midwest this weekend, its relevance is plain.  From the project prospectus:

The objective of this Standard is to provide technical design and performance criteria that will facilitate and promote the design, construction, and installation of safe, reliable, and economical storm shelters to protect the public. It is intended that this Standard be used by design professionals; storm shelter designers, manufacturers, and constructors; building officials; and emergency management personnel and government officials to ensure that storm shelters provide a consistently high level of protection to the sheltered public.

This project runs roughly in tandem with the ASCE Structural Engineering Institute SEI-17 which has recently updated its content management system and presented challenges to anyone who attempts to find the content where it used to be before the website overhaul.    In the intervening time, we direct stakeholders to the link to actual text (above) and remind education facility managers and their architectural/engineering consultants that the ICC Code Development process is open to everyone.

The ICC receives public response to proposed changes to titles in its catalog at the link below:

Standards Public Forms

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

You are encouraged to communicate with Kimberly Paarlberg (kpaarlberg@iccsafe.org) for detailed, up to the moment information.  When the content is curated by ICC staff it is made available at the link below:

ICC cdpACCESS

We maintain this title on the agenda of our periodic Disaster colloquia which approach this title from the point of view of education community facility managers who collaborate with structual engineers, architects and emergency management functionaries..   See our CALENDAR for the next online meeting, open to everyone.

Readings:

FEMA: Highlights of ICC 500-2020

ICC 500-2020 Standard and Commentary: ICC/NSSA Design and Construction of Storm Shelters

IEEE: City Geospatial Dashboard: IoT and Big Data Analytics for Geospatial Solutions Provider in Disaster Management

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content