Tag Archives: D2

Loading
loading..

Freely Available ICT Standards

United States Technical Advisory Group Administrator: INCITS

TC 64 Electrical installations and protection against electric shock

“Le Lac Léman ou Près d’Evian au lac de Genève” 1883 François BocionISO and IEC Joint Technical Committee 1  is the work center for international information and communications technology (ICT) standards that are relevant to education communities.  In accordance with ISO/IEC JTC 1 and the ISO and IEC Councils, some International Standards and other deliverables are made freely available for standardization purposes.

Freely Available International Standards

We at least follow action, and sometimes contribute data and user-interest perspective, to the development of standards produced by several ANSI-accredited ICT standard developing organizations — ATIS, BICSI, IEEE, INCITS, TIA among them.  US-based organizations may communicate directly with Lisa Rajchel, ANSI’s ISO/IEC JTC 1 Senior Director for this project: lrajchel@ansi.org.  Our colleagues at other educational organizations should contact their national standards body.

We scan the status of Infotech and Cloud standards periodically and collaborate with a number of IEEE Societies.  See our CALENDAR for the next online meeting; open to everyone.

More

The ISO/IEC Joint Technical Committee for Information Technology (JTC 1)

ISO/IEC JTC 1/SC 36 Information technology for learning, education and training

ISO/IEC JTC 1/SC 32 Data management and interchange

Healthcare Organization Management

Open consultations:

US TAG is transferred to Association for the Advancement of Medical Instrumentation from InGenesis.  Administrative details in process.  Stay tuned.

ISO FDIS 16473 Healthcare organization pandemic response information management standard | Comments due September 4th

VF_40_2025_-_Re-allocation_of_ISO_TC_304_ | Comments due July 17th

ISO_DIS 20364 Pandemic Response Standard Draft Open for Public Consultation Comments due July 1

ISO Healthcare Management Comments on Smart Hospital Standard due January 15

 Send Mike a message to coordinate comments (maanthon@umich.edu)

“Une leçon clinique à la Salpêtrière” 1887 André Brouillet

ISO Technical Committees | ANSI (U.S. Participation in ISO Activities)

Many large research universities have significant medical research and healthcare delivery enterprises. The leadership of those enterprises discount the effect of standards like this at their peril. It is easy to visualize that this document will have as transformative effect upon the healthcare industry as the ISO 9000 series of management standards in the globalization of manufacturing.

Scope

Standardization in the field of healthcare organization management comprising, terminology, nomenclature, recommendations and requirements for healthcare-specific management practices and metrics (e.g. patient-centered staffing, quality, facility-level infection control, pandemic management, hand hygiene) that comprise the non-clinical operations in healthcare entities.

Excluded are horizontal organizational standards within the scope of:

    • quality management and quality assurance (TC 176);
    • human resource management (TC 260);
    • risk management (TC 262);
    • facility management (TC 267), and;
    • occupational health and safety management (TC 283).

Also excluded are standards relating to clinical equipment and practices, enclosing those within the scope of TC 198 Sterilization of health care products.

This committee is led by the US Technical Advisory Group Administrator —Ingenesis.   The committee is very active at the moment, with new titles drafted, reviewed and published on a near-monthly basis,

 

DPAS ballot for ISO PAS 23617- Healthcare organization management: Pandemic response  (respiratory) —Guidelines for medical support of socially vulnerable groups – Comments due 16 October

ISO-TC 304 Healthcare Organization Management- Pandemic response – Contact tracing – Comments due August 3, 2023

[Issue 14-99]

Contact:  Lee Webster (lswebste@utmb.edu, lwebster@ingenesis.com), Mike Anthony (mike@standardsmichigan.com), Jack Janveja (jjanveja@umich.edu), Richard Robben (rrobben1952@gmail.com), James Harvey (jharvey@umich.edu), Christine Fischer (chrisfis@umich.edu), Dr Veronica Muzquiz Edwards (vedwards@ingenesis.com)

Category: Health, Global

Workspace / ISO 304 Healthcare Administration

More

Journal of Healthcare Management Standards: Operational Resilience of Hospital Power Systems in the Digital Age

ISO Focus Special Issue on Healthcare

ISO/TC 48 Laboratory equipment

ISO/TC 212 Clinical laboratory testing and in vitro diagnostic test systems

ISO/TC 198 Sterilization of health care products

How do standards contribute to better healthcare?

  • The American National Standards Institute — the Global Secretariat for ISO — does not provide content management systems for its US Technical Advisory Groups.  Because of the nascent committee, inspired by the work of Lee Webster at the University of Texas Medical Branch needed a content management system, we have been managing content on a Google Site facility on a University of Michigan host since 2014.Earlier this spring, the University of Michigan began upgrading its Google Sites facility which requires us to offload existing content onto the new facility before the end of June.  That process is happening now.  Because of this it is unwise for us to open the content library for this committee publicly.  Respecting copyright, confidentiality of ISO and the US Technical Advisory Group we protect most recent content in the link below and invite anyone to click in any day at 15:00 (16:00) UTC.  Our office door is open every day at this hour and has been for the better part of ten years.

Canadian Parliament Debate on Standards Incorporated by Reference

“The Jack Pine” | Tom Thomson (1916) | National Gallery of Canada

 

Originally posted January 2014

In these clips — selected from Canadian Parliamentary debate in 2013 — we observe three points of view about Incorporation by reference (IBR); a legislative drafting technique that is the act of including a second document within a main document by referencing the second document.

This technique makes an entire second (or referenced) document a part of the main document.  The consensus documents in which we advocate #TotalCostofOwnership concepts are incorporated by reference into legislation dealing with safety and sustainability at all levels of government.  This practice — which many consider a public-private partnership — is a more effective way of driving best practices for technology, and the management of technology, into regulated industries.

Parent legislation — such as the Higher Education Act of 1965, the Clean Air Act and the Energy Policy Act – almost always require intermediary bureaucracies to administer the specifics required to accomplish the broad goals of the legislation.  With the gathering pace of governments everywhere expanding their influence over larger parts of the technologies at the foundation of national economies; business and technology standards are needed to secure that influence.  These standards require competency in the application of political, technical and financial concepts; competencies that can only be afforded by incumbent interests who build the cost of their advocacy into the price of the product or service they sell to our industry.  Arguably, the expansion of government is a reflection of the success of incumbents in business and technical standards; particularly in the compliance and conformity industries.

About two years ago, the US debate on incorporation by reference has been taken to a new level with the recent statement released by the American Bar Association (ABA):

16-164-Incorporation-by-Reference-ABA-Resolution-and-Report

The American National Standards Institute responded to the ABA with a statement of its own.

16-164-ANSI-Response-to-ABA-IBR-06-16 (1)

The incorporation by reference policy dilemma has profound implications for how we safely and economically design, operate and maintain our “cities-within-cities” in a sustainable manner but, admittedly, the results are only visible in hindsight over a time horizon that often exceed the tenure of a typical college or university president.

A recent development — supporting the claims of ANSI and its accredited standards developers — is noteworthy:

The National Institute for Standards and Technology (NIST) manages a website — Standards.GOV — that is a single access point for consensus standards incorporated by reference into the Code of Federal Regulations: Standards Incorporated by Reference Database.   Note that this database does not include specific reference to safety and sustainability codes which are developed by standards setting organizations (such as NFPA, ICC, IEEE, ASHRAE and others) and usually incorporated by reference into individual state public safety and technology legislation.


LEARN MORE:

 

Management of Assets in Power Systems

“Mount Fuji from Lake Yamanaka” Takahashi Shōtei (1871-1945) | Los Angeles County Museum of Art

The Japanese Standards Association is the Global Secretariat for a standardization project devoted to the discovery and promulgation of common methods and guidelines for coordinated lifetime management of network assets in power systems to support good asset management.  In addition, this may include the development of new methods and guidelines required to keep pace with development of electrotechnologies excluding generation assets; covered by other IEC standards.

There has, and will continue to be significant investment in electricity assets which will require ongoing management to realise value for the organizations. In the last 5 years, there has been USD 718 billion investment for electricity, spending on electricity networks and storage continued, reaching an all-time high of USD 277 billion in 2016. In the United States (17% of the total) and Europe (13%), a growing share is going to the replacement of ageing transmission and distribution assets.  A more fully dimensioned backgrounder on the business environment that drives the market for this title is available in the link below:

IEC/TC 123 Strategic Business Plan

Begun in 2018, this is a relatively new project with three stabilized titles:

IEC 60050-693 ED1: Management of network assets in power systems – Terminology

IEC 63223-2 ED1: Management of network assets in power systems – Requirements

IEC TS 63224 ED1: Management of network assets in power systems – Practices and case studies

Electropedia: The World’s Online Electrotechnical Vocabulary

It is early in this project’s lifecycle; far too early to find it referenced in public safety and energy laws in the United States where it would affect #TotalCostofOwnership.   Where we should, we follow the lead of the USNC/IEC for the United States, while still mindful that many of our IEEE colleagues follow the lead of their own national standards body.

Because this project fills an obvious gap in good practice literature we maintain this project on our 4 times monthly electrotechnology colloquium that we co-host with the IEEE Education & Healthcare Facilities Committee.   See our CALENDAR for the next online meeting; open to everyone.

World Standards Day 2023 webinars on latest information technologies

The importance of functional safety | 2023-10-11  IEC Editorial Team

 

USNC/IEC Workspace

 

Electrical Resource Adequacy

 “When buying and selling are controlled by legislation,
the first things to be bought and sold are legislators.”
— P.J. O’Rourke

 

“Federal Power Act” | June 10, 1920, Chapter 285 of the 66th Congress] 

Pendleton Act (1883)

Comment on FERC Action

The Federal Energy Regulatory Commission is an independent agency within the U.S. federal government that regulates interstate transmission of electricity, natural gas, and oil. It oversees wholesale energy markets, pipeline infrastructure, and hydroelectric projects, ensuring fair rates and reliability. While independent, FERC operates under the Department of Energy’s umbrella but does not take direct orders from the executive branch.

FERC enforces energy laws, approves infrastructure projects, and regulates market competition. FERC plays a crucial role in balancing economic, environmental, and energy security concerns, aiming to maintain a stable and efficient energy system across the United States.  Since the U.S. shares interconnected electricity grids with Canada and Mexico, FERC’s decisions on transmission rules and pricing affect energy flows and grid reliability in both countries.

Our interest lies in closing a technical gap that exists upstream from the building service point and downstream from the utility supply point. Some, not all of it, can be accomplished with titles in the IEEE catalog.

Given the dominance of vertical incumbents in the electric power domain, we have submitted a tranche of reliability concepts into the ASHRAE, NFPA and ICC catalogs — not so much with the expectation that they will be gratefully received — but that our proposals will unleash competitive energies among developers of voluntary consensus standards.

One of our proposals was heard at the April-May and October meetings of the International Code Council.  We are happy to discuss the outcome of that proposal any day at the usual hour.



Commissioner-Led Reliability Technical Conference Agenda: October 16, 2024, 10:00 AM

 


Nothing happened in August

Technical Conference RE: Large Loads Co-Located at Generating Facilities: November 1, 10AM EDT

Echo Chamber Synonyms: mutual admiration society, self congratulatory club,

back patting session, congratulatory loop, closed loop of praise, reciprocal praise fest,

feedback bubble, endless validation cycle, compliment carousel.

Predictive Reliability Analysis of Power Distribution Systems Considering the Effects of Seasonal Factors on Outage Data Using Weibull Analysis Combined With Polynomial Regression


February 2024 Highlights 

Failure Rate Prediction Model of Substation Equipment Based on Weibull Distribution and Time Series Analysis

January 2024 Highlights



Transmission Planning Using a Reliability Criterion

Readings / The Administrative State

In power system engineering, availability and reliability are two important concepts, but they refer to different aspects of the system’s performance.

Reliability:

  • Reliability refers to the ability of a power system to perform its intended function without failure for a specified period under given operating conditions. It is essentially a measure of how dependable the system is.
  • Reliability metrics often include indices such as the frequency and duration of outages, failure rates, mean time between failures (MTBF), and similar measures.
  • Reliability analysis focuses on identifying potential failure modes, predicting failure probabilities, and implementing measures to mitigate risks and improve system resilience.Availability:
  • Availability, on the other hand, refers to the proportion of time that a power system is operational and able to deliver power when needed, considering both scheduled and unscheduled downtime.
  • Availability is influenced by factors such as maintenance schedules, repair times, and system design redundancies.
  • Availability is typically expressed as a percentage and can be calculated using the ratio of the uptime to the total time (uptime plus downtime).
  • Availability analysis aims to maximize the operational readiness of the system by minimizing downtime and optimizing maintenance strategies.

Reliability focuses on the likelihood of failure and the ability of the system to sustain operations over time, while availability concerns the actual uptime and downtime of the system, reflecting its readiness to deliver power when required. Both concepts are crucial for assessing and improving the performance of power systems, but they address different aspects of system behavior.

 

November 2023 Highlights | FERC insight | Volume 10

Determining System and Subsystem Availability Requirements: Resource Planning and Evaluation

Comment: These 1-hour sessions tend to be administrative in substance, meeting the minimum requirements of the Sunshine Act. This meeting was no exception. Access to the substance of the docket is linked here.

Noteworthy: Research into the natural gas supply following Winter Storm Elliot.

 


August 14, 2003


 UPDATED POLICIES ON U.S. DECARBONIZATION AND TECHNOLOGY TRANSITIONS


June 15:FERC Finalizes Plans to Boost Grid Reliability in Extreme Weather Conditions

On Monday June 13th, Federal Energy Regulatory Commission commissioners informed the House Committee on Energy and Commerce that the “environmental justice” agenda prohibits reliable dispatchable electric power needed for national power security. One megawatt of natural gas generation does not equal one megawatt of renewable generation. The minority party on the committee — the oldest standing legislative committee in the House of Representatives (established 1795) — appears indifferent to the reliability consequences of its policy.

Joint Federal-State Task Force on Electric Transmission

“Our nation’s continued energy transition requires the efficient development of new transmission infrastructure. Federal and state regulators must address numerous transmission-related issues, including how to plan and pay for new transmission infrastructure and how to navigate shared federal-state regulatory authority and processes. As a result, the time is ripe for greater federal-state coordination and cooperation.”












 

Bibliography:

Natural Gas Act of 1938

Natural Gas Policy Act of 1978

Glossary of Terms Used in NERC Reliability Standards

The Major Questions Doctrine and Transmission Planning Reform

As utilities spend billions on transmission, support builds for independent monitoring

States press FERC for independent monitors on transmission planning, spending as Southern Co. balks

Related:

Homeland Power Security

At the July 20th meeting of the Federal Energy Regulatory Commission Tristan Kessler explained the technical basis for a Draft Final Rule for Improvements to Generator Interconnection Procedures and Agreements, On August 16th the Commission posted a video reflecting changes in national energy policy since August 14, 2003; the largest blackout in American history.

Energy Standard for *Sites* and Buildings

Addendum av to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings. This addendum creates more exacting provisions for envelope alterations. The new format is intended to better communicate the requirements, triggers, and allowances associated with performing an envelope alteration to promote energy efficiency within the impacted area(s).  Consultation closes October 6.

ANSI Standards Action Weekly Edition | Given ASHRAE’s revision redlines are frequently uploaded here

The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) is an ANSI-accredited continuous-maintenance standards developer (a major contributor to what we call a regulatory product development “stream”).   Continuous maintenance means that changes to its consensus products can change in as little as 30 days so it is wise to keep pace.

Among the leading titles in its catalog is ASHRAE 90.1 Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings.  Standard 90.1 has been a benchmark for commercial building energy codes in the United States and a key basis for codes and standards around the world for more than 35 years.  Free access to ASHRAE 90.1 version is available at the link below:

READ ONLY Version of 2022 ASHRAE 90.1

Redlines are released at a fairly brisk pace — with 30 to 45 day consultation periods.  A related title — ASHRAE 189.1 Standard for the Design of High Performance Green Buildings — first published in 2009 and far more prescriptive in its scope heavily  references parent title 90.1 so we usually them as a pair because 189.1 makes a market for green building conformance enterprises. Note the “extreme prescriptiveness” (our term of art) in 189.1 which has the practical effect of legislating engineering judgement, in our view.

25 January 2023: Newly Released ASHRAE 90.1-2022 Includes Expanded Scope For Building Sites

ASHRAE committees post their redlines at the link below:

Online Standards Actions & Public Review Drafts

Education estate managers, energy conservation workgroups, sustainability officers, electric shop foreman, electricians and front-line maintenance professionals who change lighting fixtures, maintain environmental air systems are encouraged to participate directly in the ASHRAE consensus standard development process.

We also maintain ASHRAE best practice titles as standing items on our Mechanical, Water, Energy and Illumination colloquia.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [Various]

Category: Mechanical, Electrical, Energy Conservation, Facility Asset Management, US Department of Energy, #SmartCampus

Colleagues: Mike Anthony, Larry Spielvogel, Richard Robben

Under Construction:  ASHRAE WORKSPACE


More

The fundamental concept in social science is Power, in the same sense in which Energy is the fundamental concept in physics. - Bertrand Russell

ANSI/ASHRAE/IES 90.1-2019: Energy Standard For Buildings

ARCHIVE 2002-2016 / ASHRAE 90.1 ENERGY STANDARD FOR BUILDINGS

US Department of Energy Building Energy Codes Program

ASHRAE Guideline 0 The Commissioning Process

Why Software is Eating the World


* Many standards-developing organizations aim to broaden their influence by entering the product standard and certification domain. Although our primary focus is on interoperability standards (within a system of interoperable products), we also consider market dynamics when product performance specifications are incorporated by reference into public law.

Interconnected Electric Power Production Sources “Microgrids”

“Landscape with a Farm House and Windmill” (1680) / Jacob Isaaksz van Ruisdael

We have always taken a forward-looking approach to the National Electrical Code (NEC) because there is sufficient supply of NEC instructors and inspectors and not enough subject matter experts driving user-interest ideas into it.  Today we approach the parts of the 2023 NEC that cover wiring safety for microgrid systems; a relatively new term of art that appropriates safety and sustainability concepts that have existed in electrotechnology energy systems for decades.

Turn to Part II of Article 705 Interconnected Electric Power Production Sources:

Free Access 2023 National Electrical Code

You will notice that microgrid wiring safety is a relatively small part of the much larger Article 705 Content.   There were relatively minor changes to the 2017 NEC in Section 705.50  — but a great deal of new content regarding Microgrid Interconnection Devices, load side connections, backfeeding practice and disconnecting means — as can be seen in the transcripts of Code-Making Panel 4 action last cycle:

Code‐Making Panel 4 Public Input Report (692 Pages)

Code-Making Panel 4 Public Comment Report (352 Pages)

Keep in mind that the NEC says nothing (or nearly very little, in its purpose stated in Section 90.2) about microgrid economics or the life cycle cost of any other electrical installation.  It is the claim about economic advantages of microgrids that drive education facility asset management and energy conservation units to conceive, finance, install, operate and — most of all — tell the world about them.

In previous posts we have done our level best to reduce the expectations of business and finance leaders of dramatic net energy savings with microgrids — especially on campuses with district energy systems.  Microgrids do, however, provide a power security advantage during major regional contingencies — but that advantage involves a different set of numbers.

Note also that there is no user-interest from the education facility industry — the largest non-residential building construction market in the the United States — on Panel 4.   This is not the fault of the NFPA, as we explain in our ABOUT.

The 2023 NEC was released late last year.

 

The 2026 revision cycle is in full swing with public comment on the First Draft receivable until August 24, 2024.  Let’s start formulating our ideas using the 2023 CMP-4 transcripts.   The link below contains a record of work on the 2023 NEC:

2026 National Electrical Code Workspace

We collaborate with the IEEE Education & Healthcare Facility Committee which meets online 4 times per month in European and American time zones.  Since a great deal of the technical basis for the NEC originates with the IEEE we will also collaborate with other IEEE professional societies.

Mike Anthony’s father-in-law and son maintaining the electrical interactive system installed in the windmill that provides electricity to drive a pump that keeps the canal water at an appropriate level on the family farm near Leeuwarden, The Netherlands.

Issue: [19-151]

Category: Electrical, Energy

Colleagues: Mike Anthony, Jim Harvey, Kane Howard, Jose Meijer

Archive / Microgrids


 

Energy Standard for Data Centers

Consulting-Specifying Engineer (March 4, 2025): Why and how to adopt the IECC for energy-efficient designs

 

2024 Update to ASHRAE Position Statements

List of Titles, Scopes and Purposes of the ASHRAE Catalog

Public Review Draft Standards

The parent title of this standard is ASHRAE Standard 90.1: Energy Standard for Buildings Except Low-Rise Residential Buildings  and is continually under revision; frequently appearing in electrical engineering design guidelines, construction specifications, commissioning and O&M titles in our industry and others.

ASHRAE 90.4 defines an alternate compliance path, specific to data centers, while the compliance requirements for “non-data center” components are contained in ASHRAE 90.1 .  The 90.4 structure also streamlines the ongoing maintenance process as well ensures that Standards 90.1 and 90.4 stay in their respective lanes to avoid any overlap and redundancies relating to the technical and administrative boundaries.  Updates to ASHRAE 90.1 will still include the alternate compliance path defined in ASHRAE 90.4. Conversely the 2022 Edition of 90.4-2022 refers to ASHRAE 90.1-2022; cross-referencing one another synchronously

Links to noteworthy coverage from expert agencies on the 2022 revisions:

Addendum g modifies Sections 3 and 6 to support the regulation of process heat and process ventilation

HPC Data Center Cooling Design Considerations

ASHRAE standard 90.4 updates emphasize green energy

ASHRAE updated its standard for data centers

How to Design a Data Center Cooling System for ASHRAE 90.4

Designing a Data Center with Computer Software Modeling

This title resides on the standing agenda of our Infotech 400 colloquium; hosted several times per year and as close coupled with the annual meetings of ASHRAE International as possible.  Technical committees generally meet during these meetings make decisions about the ASHRAE catalog.  The next all committee conference will be hosted January 20-24, 2024 in Chicago.  As always we encourage education industry facility managers, energy conservation workgroups and sustainability professionals to participate directly in the ASHRAE consensus standard development process.  It is one of the better facilities out there.

Start at ASHRAE’s public commenting facility:

Online Standards Actions & Public Review Drafts

Energy Standard for *Sites* and Buildings


Update: May 30, 2023

Proposed Addendum g makes changes to definitions were modified in section 3 and mandatory language in Section 6 to support the regulation of process heat and process ventilation was moved in the section for clarity. Other changes are added based on comments from the first public review including changes to informative notes.

Consultation closes June 4th


Update: February 10, 2023

The most actively managed consensus standard for data center energy supply operating in education communities (and most others) is not published by the IEEE but rather by ASHRAE International — ASHRAE 90.4 Energy Standard for Data Centers (2019).  It is not required to be a free access title although anyone may participate in its development.   It is copyrighted and ready for purchase but, for our purpose here, we need only examine its scope and purpose.   A superceded version of 90.4 is available in the link below:

Third ISC Public Review Draft (January 2016)

Noteworthy: The heavy dependence on IEEE power chain standards as seen in the Appendix and Chapter 8.  Recent errata are linked below:

https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20errata/standards/90.4-2016errata-5-31-2018-.pdf

https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20errata/standards/90.4-2019errata-3-23-2021-.pdf

We provide the foregoing links for a deeper dive “into the weeds”.  Another addendum has been released for consultation; largely administrative:

ASHRAE 90.4 | Pages 60-61 | Consultation closes January 15, 2023.

It is likely that the technical committee charged with updating this standard are already at work preparing an updated version that will supercede the 2019 Edition.  CLICK HERE for a listing of Project Committee Interim Meetings.

We maintain many titles from the ASHRAE catalog on the standing agenda of our Mechanical, Energy 200/400, Data and Cloud teleconferences.   See our CALENDAR for the next online meeting; open to everyone.


Originally posted Summer 2020.

 

ASHRAE International has released four new addenda to its energy conservation consensus document ASHRAE 90.4-2016 Energy Standard for Data Centers.  This document establishes the minimum energy efficiency requirements of data centers for design and construction, for the creation of a plan for operation and maintenance and for utilization of on-site or off-site renewable energy resources.

It is a relatively new document more fully explained in an article published by ASHRAE in 2016 (Click here).   The addenda described briefly:

Addendum a  – clarifies existing requirements in Section 6.5 as well as introduce new provisions to encourage heat recovery within data centers.

Addendum b  – clarifies existing requirements in Sections 6 and 11 and to provide guidance for taking credit for renewable energy systems.

Addendum d  – a response to a Request for Interpretation on the 90.4 consideration of DieselRotary UPS Systems (DRUPS) and the corresponding accounting of these systems in the Electrical Loss Component (ELC). In crafting the IC, the committee also identified several marginal changes to 90.4 definitions and passages in Section 8 that would add further clarity to the issue. This addendum contains the proposed changes for that aim as well as other minor changes to correct spelling or text errors, incorporate the latest ELC values into Section 11, and to refresh information in the Normative Reference.

Addendum e adds language to Section 11 intended to clarify how compliance with Standard 90.4 can be achieved through the use of shared systems.

Comments are due September 6th.   Until this deadline you may review the changes and comment upon them by by CLICKING HERE

Universitat de Barcelona

 

Proposed Addendum g

Education facility managers, energy conservation workgroups and sustainability professionals are encouraged to participate directly in the ASHRAE standard development process.   Start at ASHRAE’s public commenting facility:

Online Standards Actions & Public Review Drafts

The ASHRAE catalog is a priority title in our practice.  This title appears on the standing agenda of our Infotech sessions.  See our CALENDAR for the next online meeting; open to everyone.

"One day ladies will take their computers for walks in the park and tell each other, "My little computer said such a funny thing this morning" - Alan Turing

Issue: [12-54]

Category: Telecommunications, Infotech, Energy

Colleagues: Mike Anthony, Robert G. Arno, Neal Dowling, Jim Harvey, Mike Hiler, Robert Schuerger, Larry Spielvogel

Workspace / ASHRAE

 

Underground Electrotechnology

Best practice literature to be covered in our 11 AM session today are listed below.  These codes and standards ensure safety, reliability, and compliance for underground electrical and telecommunications installations:

2028 National Electrical Safety Code

  • National Electrical Code (NEC), NFPA 70
    • Relevance: The NEC, published by the National Fire Protection Association, is the primary standard for safe electrical installations in the U.S. Articles 300 (Wiring Methods), 310 (Conductors for General Wiring), and 230 (Services) cover underground wiring, including burial depths, conduit requirements, and direct-burial cables like Type UF and USE-2. For example, NEC 300.5 specifies minimum cover depths (e.g., 24 inches for direct-burial cables, 18 inches for PVC conduit).
    • Key Aspects: Rules for conductor protection, grounding, GFCI requirements, and conduit types (e.g., Schedule 80 PVC). Adopted by most U.S. jurisdictions with local amendments.

ANSI/TIA-568 Series (Commercial Building Telecommunications Cabling Standards)

  • Relevance: Governs low-voltage telecommunications cabling, including underground installations. TIA-568.2-D (Balanced Twisted-Pair) and TIA-568.3-D (Optical Fiber) specify performance requirements for cables like Cat6 and fiber optics, including maximum distances (e.g., 100 meters for twisted-pair).
  • Key Aspects: Ensures signal integrity, proper separation from high-voltage lines, and compliance for plenum or direct-burial-rated cables. Voluntary unless mandated by local codes.

IEEE 835 (Standard Power Cable Ampacity Tables)

  • Relevance: Provides ampacity ratings for underground power cables, critical for sizing conductors to prevent overheating.
  • Key Aspects: Includes data for direct-burial and ducted installations, considering soil thermal resistivity and ambient conditions. Often referenced alongside NEC for high-current applications.

UL 83 (Standard for Thermoplastic-Insulated Wires and Cables)

  • Relevance: Underwriters Laboratories standard for wires like THWN-2, commonly used in underground conduits. Ensures cables meet safety and performance criteria for wet locations.
  • Key Aspects: Specifies insulation durability, temperature ratings, and suitability for direct burial or conduit use. NEC requires UL-listed cables for compliance.

OSHA 1910.305 (Wiring Methods, Components, and Equipment)

  • Relevance: U.S. Occupational Safety and Health Administration standard for workplace electrical safety, including underground installations in industrial settings.
  • Key Aspects: Specifies approved wiring methods (e.g., armored cable, conduit) and enclosure requirements for underground cable trays or boxes. Focuses on worker safety during installation and maintenance.

CSA C22.1 (Canadian Electrical Code)

  • Relevance: Canada’s equivalent to the NEC, governing underground electrical installations. Similar to NEC but tailored to Canadian conditions and regulations.
  • Key Aspects: Defines burial depths, conduit types, and grounding requirements. For example, low-voltage cables (<30V) require 6-inch burial depth, like NEC.

Notes:

  • Regional Variations: Always consult local building authorities, as codes like the NEC or AS/NZS 3000 may have amendments. For example, some U.S. states reduce burial depths for GFCI-protected circuits (NEC 300.5).
  • Low-Voltage vs. High-Voltage: Standards like TIA-568 and ISO/IEC 11801 focus on low-voltage (e.g., <50V) telecommunications, while NEC and IEC 60364 cover both power and telecom.
  • Practical Compliance: Before installation, call 811 (U.S.) or equivalent to locate underground utilities, and obtain permits/inspections as required by local codes.
  • Critical Examination: While these standards are authoritative, they can lag behind technological advancements (e.g., new cable types like GameChanger exceeding TIA-568 limits). Over-reliance on minimum requirements may limit performance for cutting-edge applications.

Underground Electrotechnology General Conditions and Standard Details

Related:

1793-2012 – IEEE Guide for Planning and Designing Transition Facilities between Overhead and Underground Transmission Lines

The effect of an underground to overhead transition point on the specification of sheath voltage limiters in underground networks

Channel Characteristics Analysis of Medium Voltage Overhead and Mixed Overhead/Underground Cable Power Network

P81/D4, Jan 2025 – IEEE Draft Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System

2028 National Electrical Safety Code

IEEE Standards Association Public Review

Related Issues and Recent Research | Federal Legislation

“Rain in Charleston” 1951 Thomas Fransioli

This title sets the standard of care for construction, operation and maintenance of power and telecommunication infrastructure on the supply side of the point of common coupling. It is the first title to contemplate when weather disasters happen; with most public utilities bound to its best practice assertions by statute. Pre-print of Change Proposals for changes to appear in 2028 Edition will be available by 1 July 2025; with 24 March 2026 as the close date for comments on proposed changes.

Project Introduction for the 2028 Edition (2:39 minutes)

NESC 2028 Revision Schedule

Changes proposals for the Edition will be received until 15 May 2024

Proposals for the 2028 National Electrical Safety Code

Project Workspace: Update Data Tables in IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

Painting by Linda Kortesoja Klenczar

Federal Energy Regulatory Commission: Electrical Resource Adequacy

Relevant Research

NARUC Position on NFPA (NEC) and IEEE (NESC) Harmonization

The standard of care for electrical safety at high and low voltage is set by both the NEC and the NESC. There are gaps, however (or, at best “gray areas”) — the result of two technical cultures: utility power culture and building fire safety culture. There is also tradition. Local system conditions and local adaptation of regulations vary. Where there is a gap; the more rigorous requirement should govern safety of the public and workers.

The 2023 National Electrical Safety Code (NESC)– an IEEE title often mistaken for NFPA’s National Electrical Code (NEC) — was released for public use about six months ago; its normal 5-year revision cycle interrupted by the circumstances of the pandemic.   Compared with the copy cost of the NEC, the NESC is pricey, though appropriate for its target market — the electric utility industry.  Because the 2023 revision has not been effectively “field tested” almost all of the available support literature is, effectively, “sell sheets” for pay-for seminars and written by authors presenting themselves as experts for the battalions of litigators supporting the US utility industry.  Without the ability to sell the NESC to prospective “insiders” the NESC would not likely be commercial prospect for IEEE.   As the lawsuits and violations and conformance interests make their mark in the fullness of time; we shall see the 2023 NESC “at work”.

IEEE Standards Association: Additional Information, Articles, Tools, and Resources Related to the NESC

Office of the President: Economic Benefits of Increasing Electric Grid Resilience to Weather Outages

Research Tracks:

NARUC Resolution Urging Collaboration Between the National Electrical Safety Code and the National Electrical Code

Reliability of Communication Systems needed for the autonomous vehicle transformation

  1. Smart Grid Technologies:
    • Investigating advanced technologies to enhance the efficiency, reliability, and sustainability of power grids.
  2. Energy Storage Systems:
    • Researching and developing new energy storage technologies to improve grid stability and accommodate intermittent renewable energy sources.
  3. Distributed Generation Integration:
    • Studying methods to seamlessly integrate distributed energy resources such as solar panels and wind turbines into the existing power grid.
  4. Grid Resilience and Security:
    • Exploring technologies and strategies to enhance the resilience of power grids against cyber-attacks, natural disasters, and other threats.
  5. Demand Response Systems:
  6. Advanced Sensors and Monitoring:
    • Developing new sensor technologies and monitoring systems to enhance grid visibility, detect faults, and enable predictive maintenance.
  7. Power Quality and Reliability:
    • Studying methods to improve power quality, reduce voltage fluctuations, and enhance overall grid reliability.
  8. Integration of Electric Vehicles (EVs):
    • Researching the impact of widespread electric vehicle adoption on the grid and developing smart charging infrastructure.
  9. Grid Automation and Control:
    • Exploring advanced automation and control strategies to optimize grid operations, manage congestion, and improve overall system efficiency.
  10. Campus Distribution Grid Selling and Buying 

 


Relevant Technical Literature

IEC 60050 International Electrotechnical Vocabulary (IEV) – Part 601: Generation, transmission and distribution of electricity | April 16

Recommended Practice for Battery Management Systems in Energy Storage Applications | Comments Due March 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

 

Standards:

Presentation | FERC-NERC-Regional Entity Joint Inquiry Into Winter Storm Elliott

IEEE Guide for Joint Use of Utility Poles with Wireline and/or Wireless Facilities

NESC Rule 250B and Reliability Based Design

NESC Requirements (Strength and Loading)

Engineering Analysis of Possible Effects of 2017 NESC Change Proposal to Remove 60′ Exemption

National Electrical Safety Code Workspace


Joint Use of Electric Power Transmission & Distribution Facilities and Equipment

A Framework to Quantify the Value of Operational Resilience for Electric Power Distribution Systems

August 14, 2003 Power Outage at the University of Michigan

Technologies for Interoperability in Microgrids for Energy Access


National Electrical Safety Code: Revision Cycles 1993 through 2023

 


February 24, 2023

The new code goes into effect 1 February 2023, but is now available for access on IEEE Xplore! Produced exclusively by IEEE, the National Electrical Safety Code (NESC) specifies best practices for the safety of electric supply and communication utility systems at both public and private utilities.  The bibliography is expanding rapidly:

NESC 2023: Introduction to the National Electrical Safety Code

NESC 2023: Rule Changes

NESC 2023Safety Rules for Installation and Maintenance of Overhead Electric Supply

NESC 2023Safety Rules for the Installation and Maintenance of Underground Electric Supply and Communication Lines

NESC 2023: Rules for Installation and Maintenance of Electric Supply Stations

IEEE Digital Library

Grid Edge Visibility: Gaps and a road map


October 31, 2022

The IEEE NESC technical committee has released a “fast track” review of proposed changes to fault-managed power system best practice:

CP5605 Provides a definition of new Fault Managed Power System (FMPS) circuits used for the powering of
communications equipment clearly defines what constitutes a FMPS circuit for the purposes of application of the NESC
Rules of 224 and 344
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXtAAAAADhMnPs

CP5606 Provides new definitions of Communication Lines to help ensure that Fault Managed Power Systems (FMPS)
circuits used for the exclusive powering of communications equipment are clearly identified as communications lines
and makes an explicit connection to Rule 224B where the applicable rules for such powering circuits are found.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXpAAAAAFfvWIs

CP5607 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXuAAAAAEEt3p4

CP5608 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXvAAAAAGrzyeI

We refer them to the IEEE Education & Healthcare Facilities Committee for further action, if any.

 


August 5, 2022

We collaborate closely with the IEEE Education & Healthcare Facilities Committee (IEEE E&H) to negotiate the standard of care for power security on the #SmartCampus  since many campus power systems are larger than publicly regulated utilities.  Even when they are smaller, the guidance in building the premise wiring system — whether the premise is within a building, outside the building (in which the entire geography of the campus footprint is the premise), is inspired by IEEE Standards Association administrated technical committees.

Northeast Community College | Norfolk, Nebraska

Today we begin a list of noteworthy changes to be understood in the next few Power colloquia.  See our CALENDAR for the next online meeting.

  1. New rules 190 through 195 cover photovoltaic generating stations.  Rule 116c adds an exception for short lengths of insulated power cables and short-circuit protection if the situation involves fewer than 1,000 volts.
  2. Rule 320B has been revised to clarify separations that apply to communications and supply in different conduit systems.
  3. Table 410-4 is based on the latest arc flash testing on live-front transformers.
  4. Rule 092A adds an exception allowing protection, control, and safety battery systems to not be grounded.
  5. Rules 234 B1, C1, D1 were revised to better present vertical and horizontal wind clearances, and to coordinate requirements with the new Table 234-7.
  6. Rule 120A was revised to provide correction factors for clearances on higher elevations.
  7. Table 253-1 has been revised to reduce the load factor for fiber-reinforced polymer components under wire tension—including dead ends—for Grade C construction.
  8. Rule 410A now requires a specific radio-frequency safety program for employees who might be exposed.
  9. In the Clearances section, as well as in the specification of the Grade of Construction in Table 242-1, the Code further clarifies the use of non-hazardous fiber optic cables as telecom providers continue to expand their networks.
  10. Revisions in the Strength & Loading sections include modified Rule 250C, which addresses extreme wind loading for overhead lines. Two wind maps are now provided instead of the previous single one. A map for Grade B, the highest grade of construction, with a Mean Recurrence Interval (MRI) of 100 years (corresponding to a one percent annual probability of occurrence) is provided in place of the previous 50–90-year MRI map. For Grade C construction, a separate 50-year MRI (two percent annual probability of occurrence) map is now provided. In the previous Code, a factor was applied to the 50–90-year MRI map for application to Grade C.
  11. Changes were also made to the method of determining the corresponding wind loads, consistent with the latest engineering practices as an example of a Code revision focused on public safety, the ground end of all anchor guys adjacent to regularly traveled pedestrian thoroughfares, such as sidewalks, and similar places where people can be found must include a substantial and conspicuous marker to help prevent accidents. The previous Code did not require the marking of every such anchor guy.
  12. Significant revisions were made in Section 14 covering batteries. Previous editions of the code were based on lead-acid technology and batteries only used for backup power. The 2023 Code incorporates the new battery technologies and addresses energy storage and backup power.
  13. A new Section 19 of the code covers photovoltaic generating stations, with sections addressing general codes, location, grounding configurations, vegetation management, DC overcurrent protection, and DC conductors. These new rules accommodate large-scale solar power projects.
  14. In the Clearances section, all rules for wireless antenna structures have been consolidated in the equipment section (Rule 238 and 239), which makes the Code more user-friendly.
  15. A new subcommittee was created focusing on generating stations, with the original subcommittee continuing to address substations.
  16. A working group is investigating Fault Managed Power Systems (FMPS) cables as the technology may be used for 5G networks. The team is looking at possible impacts, including clearances and work rules.

 


February 18, 2021

 

Several proposals recommending improvements to the 2017 National Electrical Safety Code (NESC) were submitted to the IEEE subcommittees drafting the 2022 revision of the NESC.   Some of the proposals deal with coordination with the National Electrical Code — which is now in its 2023 revision cycle.  Keep in mind that that NESC is revised every 5 years at the moment; the NEC is revised every 3 years.

The original University of Michigan standards advocacy enterprise has been active in writing the NESC since the 2012 edition and set up a workspace for use by electrical professionals in the education industry.   We will be using this workspace as the 2022 NESC continues along its developmental path:

IEEE 2022 NESC Workspace

The revision schedule — also revised in response to the circumstances of the pandemic — is linked below::

NESC 2023 Edition Revision Schedule*

 

The NESC is a standing item on the 4-times monthly teleconferences of the IEEE Education & Healthcare Facilities committee.  The next online meeting is shown on the top menu of the IEEE E&H website:

IEEE E&H Committee

We have a copy of the first draft of the 2023 NESC and welcome anyone to join us for an online examination during any of Power & ICT teleconferences.  See our CALENDAR for the next online meeting.

Business unit leaders, facility managers and electrical engineers working in the education facilities industry may be interested in the campus power system reliability database.   Forced outages on large research campuses, for example, can have enterprise interruption cost of $100,000 to $1,000,000 per minute.    The campus power system forced outage database discriminates between forced outages attributed to public utility interruptions and forced outages attributed to the university-owned power system.   The E&H committee will convey some of the discipline applied by the IEEE 1366 technical committee into its study of campus power systems and, ultimately, setting a benchmark for the standard of care for large university power systems.

 

 

* The IEEE changed the nominal date of the next edition; likely owed to pandemic-related slowdown typical for most standards developing organizations.

Issue: [16-67]

Contact: Mike Anthony, Robert G. Arno, Lorne Clark, Nehad El-Sharif, Jim Harvey, Kane Howard, Joe Weber, Guiseppe Parise, Jim Murphy

Category: Electrical, Energy Conservation & Management, Occupational Safety

ARCHIVE: University of Michigan Advocacy in the NESC 2007 – 2017


LEARN MORE:

P1366 – Guide for Electric Power Distribution Reliability Indices 

University Design Guidelines that reference the National Electrical Safety Code

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content