Global Positioning System: A Generation of Service to the World

Loading
loading...

Global Positioning System: A Generation of Service to the World

December 12, 2025
mike@standardsmichigan.com
, , ,
No Comments

Citizens of the Earth depend upon United States leadership in this technology for several reasons:

Development: The GPS was originally developed by the US Department of Defense for military purposes, but it was later made available for civilian use. The US has invested heavily in the development and maintenance of the system, which has contributed to its leadership in this area.

Coverage: The GPS provides global coverage, with 24 satellites orbiting the earth and transmitting signals that can be received by GPS receivers anywhere in the world. This level of coverage is unmatched by any other global navigation system.

Accuracy: The US has worked to continually improve the accuracy of the GPS, with current accuracy levels estimated at around 10 meters for civilian users and even higher accuracy for military users.

Innovation: The US has continued to innovate and expand the capabilities of the GPS over time, with newer versions of the system including features such as higher accuracy, improved anti-jamming capabilities, and the ability to operate in more challenging environments such as indoors or in urban canyons.

Collaboration: The US has collaborated with other countries to expand the reach and capabilities of the GPS, such as through the development of compatible navigation systems like the European Union’s Galileo system and Japan’s QZSS system.

United States leadership in the GPS has been driven by a combination of investment, innovation, collaboration, and a commitment to improving the accuracy and capabilities of the system over time.

Timing Applications: GPS.GOV

Suggested Functional Specifications for a GPS-Synchronized Clock System using Network Time Protocol and Power over Ethernet

Construction Specifications for Exterior Clocks

Seamless positioning system using GPS and beacons for community service robot

Global Positioning System: Monitoring the Fuel Consumption in Transport Distribution

Fire Alarm & Signaling Code

December 12, 2025
mike@standardsmichigan.com

No Comments

“Prometheus Bound” | Thomas Cole (1847)

NFPA 72 National Fire Alarm and Signaling Code is one of the core National Fire Protection Association titles widely incorporated by reference into public safety legislation.   NFPA 72 competes with titles of “similar” scope — International Fire Code — developed by the International Code Council.  We place air quotes around the word similar because there are gaps and overlaps depending upon whether or not each is adopted partially or whole cloth by the tens of thousands of jurisdictions that need both.

Our contact with NFPA 72 dates back to the early 2000’s when the original University of Michigan advocacy enterprise began challenging the prescriptive requirements for inspection, testing and maintenance (IT&M) in Chapter 14.  There are hundreds of fire alarm shops, and thousands of licensed fire alarm technicians in the education facility industry and the managers of this cadre of experts needed leadership in supporting their lower #TotalCostofOwnership agenda with “code-writing and vote-getting”.   There was no education industry trade association that was even interested, much less effective, in this space so we had to do “code writing and vote getting” ourselves (See ABOUT).

Code writing and vote getting means that you gather data, develop relationships with like minded user-interests, find agreement where you can, then write proposals and defend them at NFPA 72 technical committee meetings for 3 to 6 years.  Prevailing in the Sturm und Drang of code development for 3 to 6 years should be within the means of business units of colleges and universities that have been in existence for 100’s of years.  The real assets under the stewardship of these business units are among the most valuable real assets on earth.

Consider the standard of care for inspection, testing and maintenance.  Our cross-cutting experience in over 100 standards suites allows us to say with some authority that, at best the IT&M tables of NFPA 72 Chapter 14 present easily enforceable criteria for IT&M of fire alarm and signaling systems.  At worst, Chapter 14 is a solid example of market-making by incumbent interests as the US standards system allows.   Many of the IT&M requirements can be modified for a reliability, or risk-informed centered maintenance program but fire and security shops in the education industry are afraid to apply performance standards because of risk exposure.   This condition is made more difficult in large universities that have their own maintenance and enforcement staff.  The technicians see opportunities to reduce IT&M frequencies — thereby saving costs for the academic unit facility managers — the enforcement/compliance/conformity/risk management professionals prohibit the application of performance standards.  They want prescriptive standards for bright line criteria to make their work easier to measure.

While we have historically focused on Chapter 14 we have since expanded our interest into communication technologies within buildings since technicians and public safety personnel depend upon them.  Content in Annex G — Guidelines for Emergency Communication Strategies for Buildings and Campuses — is a solid starting point and reflects of our presence when the guidance first appeared in the 2016 Edition.  We shall start with a review of the most recent transcript of the NFPA Technical Committee on Testing and Maintenance of Fire Alarm and Signaling Systems

NFPA 72 First Draft Meeting (A2024)

Public Emergency Reporting Systems (SIG-PRS) First Draft

Public comment of the First Draft of the 2025 Edition is receivable until May 31, 2023.   As always, we encourage direct participation in the NFPA process by workpoint experts with experience, data and even strong opinions about shortcomings and waste in this discipline.  You may key in your proposals on the NFPA public input facility linked below:

https://www.nfpa.org/login

You will need to set up a (free) NFPA TerraView account.   Alternatively, you may join us any day at 11 AM US Eastern time or during our Prometheus or Radio colloquia.   See our CALENDAR for the online meeting.

Issue: [15-213]

Category: Fire Safety & Security, #SmartCampus, Informatics

Colleagues: Mike Anthony, Joe DeRosier, Josh Elvove, Jim Harvey, Marcelo Hirschler


More

2013 NFPA 72 National Fire Alarm and Signaling Code (357 pages)

TIA-222 Standard For Towers And Antenna Supporting Structures

 

Emergency Communication Strategies for Buildings

 

ARCHIVE / NFPA 72

National Center for Spectator Sports Safety and Security

 

Home Economics

December 10, 2025
mike@standardsmichigan.com
,
No Comments

Today at the usual hour we review the standards, codes, regulations and best practice literature for the safety and sustainability of facilities for teaching skills needed for supporting families.

Inglenook

Salutariness | Fashion

Commercial Kitchens

Life Safety Code

Electrical Safety

Energy Standard for *Sites* and Buildings

Current Issues and Recent Research

What the University of Michigan has done to reduce the life cycle cost of the real assets of educational settlements in the USA

What is Happening to the Family, and Why?

Well Water Quality

December 10, 2025
mike@standardsmichigan.com
,
No Comments

Michigan Central | Water 330 | 2021 Michigan Plumbing Code

Water testing helps ensure that well owners have safe, clean drinking water.

Protect the water quality of your water well

One of the first activities upon waking is interacting with water. Approximately 25% of households in the state of Michigan rely on private well water as their primary drinking water source.  This figure comes from the Michigan Department of Environment, Great Lakes, and Energy (EGLE), which estimates nearly 1.12 million households use private wells out of a total of roughly 4.1–4.6 million households statewide (based on U.S. Census data and population estimates of about 10 million residents, with an average household size of 2.5).

Other sources, such as Michigan State University Extension and the Michigan Water Stewardship Program, report slightly higher figures of 44–45% for overall groundwater reliance (including public systems drawing from aquifers), but the specific share for private household wells aligns with the 25% estimate from EGLE. Rural and southeastern areas of the state have the highest concentrations.

Sunday Brunch

Sunday Brunch Menu | 10:30 – 1:30 AM Heritage Room

Michigan State University Alumni Chapel

Michigan State University | Ingham County

Readings: Domestic Science

December 9, 2025
mike@standardsmichigan.com
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content