Tag Archives: D2

Loading
loading..

Readings: The “30-30” Rule for Outdoor Athletic Events Lightning Hazard

Thunderstorm | Shelter (Building: 30/30 Rule)

The standards for delaying outdoor sports due to lightning are typically set by governing bodies such as sports leagues, associations, or organizations, as well as local weather authorities. These standards may vary depending on the specific sport, location, and level of play. However, some common guidelines for delaying outdoor sports due to lightning include:

  1. Lightning Detection Systems: Many sports facilities are equipped with lightning detection systems that can track lightning activity in the area. These systems use sensors to detect lightning strikes and provide real-time information on the proximity and severity of the lightning threat. When lightning is detected within a certain radius of the sports facility, it can trigger a delay or suspension of outdoor sports activities.
  2. Lightning Distance and Time Rules: A common rule of thumb used in outdoor sports is the “30-30” rule, which states that if the time between seeing lightning and hearing thunder is less than 30 seconds, outdoor activities should be suspended, and participants should seek shelter. The idea is that lightning can strike even when it is not raining, and thunder can indicate the proximity of lightning. Once the thunder is heard within 30 seconds of seeing lightning, the delay or suspension should be implemented.
  3. Local Weather Authority Guidelines: Local weather authorities, such as the National Weather Service in the United States, may issue severe weather warnings that include lightning information. Sports organizations may follow these guidelines and suspend outdoor sports activities when severe weather warnings, including lightning, are issued for the area.
  4. Sports-Specific Guidelines: Some sports may have specific guidelines for lightning delays or suspensions. For example, golf often follows a “Play Suspended” policy, where play is halted immediately when a siren or horn is sounded, and players are required to leave the course and seek shelter. Other sports may have specific rules regarding how long a delay should last, how players should be informed, and when play can resume.

It’s important to note that safety should always be the top priority when it comes to lightning and outdoor sports. Following established guidelines and seeking shelter when lightning is detected or severe weather warnings are issued can help protect participants from the dangers of lightning strikes.

Noteworthy: NFPA titles such as NFPA 780 and NFPA 70 Article 242 deal largely with wiring safety, informed by assuring a low-resistance path to earth (ground)

There are various lightning detection and monitoring devices available on the market that can help you stay safe during thunderstorms. Some of these devices can track the distance of lightning strikes and alert you when lightning is detected within a certain radius of your location. Some devices can also provide real-time updates on lightning strikes in your area, allowing you to make informed decisions about when to seek shelter.

Examples of such devices include personal lightning detectors, lightning alert systems, and weather stations that have lightning detection capabilities. It is important to note that these devices should not be solely relied upon for lightning safety and should be used in conjunction with other safety measures, such as seeking shelter indoors and avoiding open areas during thunderstorms.

Infotech 200

Today we break down the literature for building, maintaining and supporting the computing infrastructure of education communities.  We use the term “infotech” gingerly to explain action for a  broad span of technologies that encompass enterprise servers and software, wireless and wired networks, campus phone networks, and desktop computers that provide administrative services and career tech video production.   The private sector has moved at light speed to respond to the circumstances of the pandemic; so have vertical incumbents evolving their business models to seek conformance revenue in this plasma-hot domain.

Starting 2023 we break down the topic accordingly:

Infotech 100: Survey of the principal standards developing organizations whose catalogs are incorporated by reference into federal and state legislation.  Revision cycles.

Infotech 200: Campus computing facilities for research and education

Infotech 300: Communication networks, wired and unwired at the demarcation point; crucial for defining the responsibilities and boundaries between the service provider and the customer.

Infotech 400:  System, middleware and software — Python, Fortran 2018, Apache, Julia, C++ and others

Infotech 300

We collaborate closely with the IEEE Education and Healthcare Electrotechnology Committee.  Use the login credentials at the upper right of our home page.

Internet of Small Things

Freely Available ICT Standards

National Electrical Definitions

NFPA Glossary of Terms

Because electrotechnology changes continually, definitions (vocabulary) in its best practice literature changes continually; not unlike any language on earth that adapts to the moment and place.

The changes reflect changes in technology or changes in how the technology works in practice; even how the manufacturers create adaptations to field conditions by combining functions.   Any smart electrical component has a digital language embedded in it, for example.

Consider the 2023 National Electrical Code.  Apart from many others the NEC will contain a major change to Article 100 (Definitions); the subject of elevated debate over the past three years.

When we refer “language” we must distinguish between formal language, informal language, colloquial language and dialect which may differ the language spoken, language written at the office and language used on the job site.  “Terms of art”

FREE ACCESS: 2020 National Electrical Code (NFPA 70)

2023 NEC Public Input Report CMP-1 (868 pages)

2023 NEC Second Draft Public Comment Report (914 pages)

Are these terms (or, “terms of art”) best understood in context (upstream articles in Chapters 4 through 8) — or should they be adjudicated by the 14 Principals of Code Making Panel 1?   The answer will arrive in the fullness of time.   Many changes to the National Electrical Code require more than one cycle to stabilize.

Code Making Panel 1 has always been the heaviest of all NEC panels.  As explained n our ABOUT, the University of Michigan held a vote in CMP-1 for 20+ years (11 revision cycles) before moving to the healthcare facilities committee for the IEEE Education & Healthcare Facilities Committee.  Standards Michigan continues its involvement on behalf of the US education facility industry — the second largest building construction market.  There is no other pure user-interest voice on any technical committee; although in some cases consulting companies are retained for special purposes.

To serve the purpose of making NFPA 70 more “useable” we respect the Standards Council decision to make this change if it contributes to the viability of the NFPA business model.  We get to say this because no other trade association comes close to having as enduring and as strong a voice:  NFPA stands above all other US-based SDO’s in fairness and consideration of its constituency.  The electrical safety community in the United States is a mighty tough crowd.

If the change does not work, or work well enough, nothing should prohibit reversing the trend toward “re-centralizing” — or “de-centralizing” the definitions.

Public comment on the First Draft of the 2026 Edition will be received until August 28, 2024. 

Electrical Contractor: Round 1 of the 2023 NEC: A summary of proposed changes (Mark Earley, July 15, 2021)

Electrical Contractor: 2023 Code Article and Definition Revisions: Accepting (NEC) change, part 2 (Mark Earley, March 15, 2022)

Hospital Plug Load

Today at 16:00 UTC we examine relatively recent transactions in electrotechnologies — power, information and communication technology — that are present (and usually required) in patient care settings.   At a patient’s bedside in a hospital or healthcare setting, various electrical loads or devices may be present to provide medical care, monitoring, and comfort. Some of the common electrical loads found at a patient’s bedside include:

Hospital Bed: Electric hospital beds allow for adjustments in height, head position, and leg position to provide patient comfort and facilitate medical procedures.

Patient Monitor: These monitors display vital signs such as heart rate, blood pressure, oxygen saturation, and respiratory rate, helping healthcare professionals keep track of the patient’s condition.

Infusion Pumps: These devices administer medications, fluids, and nutrients intravenously at a controlled rate.

Ventilators: Mechanical ventilators provide respiratory support to patients who have difficulty breathing on their own.

Pulse Oximeter: This non-invasive device measures the oxygen saturation level in the patient’s blood.

Electrocardiogram (ECG/EKG) Machine: It records the electrical activity of the heart and is used to diagnose cardiac conditions.

Enteral Feeding Pump: Used to deliver liquid nutrition to patients who cannot take food by mouth.

Suction Machine: It assists in removing secretions from the patient’s airway.

IV Poles: To hold and support intravenous fluid bags and tubing.

Warming Devices: Devices like warming blankets or warm air blowers are used to maintain the patient’s body temperature during surgery or recovery.

Patient Call Button: A simple push-button that allows patients to call for assistance from the nursing staff.

Overbed Tables: A movable table that allows patients to eat, read, or use personal items comfortably.

Reading Lights: Bedside lights that allow patients to read or perform tasks without disturbing others.

Television and Entertainment Devices: To provide entertainment and alleviate boredom during the patient’s stay.

Charging Outlets: Electrical outlets to charge personal electronic devices like smartphones, tablets, and laptops.

It’s important to note that the specific devices and equipment present at a patient’s bedside may vary depending on the level of care required and the hospital’s equipment standards. Additionally, strict safety measures and electrical grounding are essential to ensure patient safety when using electrical devices in a healthcare setting.  

We have been tracking the back-and-forth on proposals, considerations, adoption and rejections in the 3-year revision cycles of the 2023 National Electrical Code and the2021 Healthcare Facilities Code.  We will use the documents linked below as a starting point for discussion; and possible action:

NFPA 99:

Electrical Systems (HEA-ELS) Public Input

Electrical Systems (HEA-ELS) Public Comment

NFPA 70:

National Electrical Code CMP-15

Fire Protection Research Foundation:

Electric Circuit Data Collection: An Analysis of Health Care Facilities (Mazetti Associates)

iDesign Services

Matt Dozier, Principal CMP-15

IEEE Education & Healthcare Facility Electrotechnology

There are many other organizations involved in this very large domain — about 20 percent of the US Gross Domestic Product.

Ahead of the September 7th deadline for new proposals for Article 517 for the 2026 National Electrical Code we will examine their influence in other sessions; specifically in our Health 100,200,300 and 400 colloquia.  See our CALENDAR for the next online meeting; open to everyone.

2026 National Electrical Code Workspace

Plug Load Management: Department of Energy By the National Renewable Energy Laboratory

How Engineers are Strengthening the Electrical Power Grid

 

 

How does the electrical grid respond to a crisis?

If the power goes out after a thunderstorm, utility crews are on the job within hours to restore service and get the lights back on. Most electric utilities in the U.S. have a reputation for reliability and recovery from situations like this. It has been noticed as planners began thinking about increased natural disasters brought on by population migration patterns, manmade interference due to malicious cyber-attacks, and the instability brought about by adding large quantities of renewable energy.

At North Carolina State University, The Future Renewable Electric Energy Delivery and Management (FREEDOM) Systems Engineering Research Center was created through funding from the National Science Foundation in 2008 to modernize the electrical grid to accommodate sustainable energy, such as wind and solar power. The Freedom Center has been involved in developing online tools for assessing vulnerabilities to address cyber-physical security called distributed grid intelligence. The hope is that smart microgrids with sensors embedded throughout the system might be more resilient to failure and easier to bring back online and large multi-state electric grids. But the emerging smart grid, together with distributed renewable energy such as rooftop solar, presents a new set of challenges to resilience. The Smart Grid involves more distributed energy down to the home level. That kind of penetration adds a level of vulnerability to a cyber threat. Engineers will certainly have to pay attention to that as the grid gets smarter.

Emergency and Standby Power Systems

Sporty weather season in the United States inspires a revisit of best practice for designing, building and maintaining the systems that provide limited electricity when the primary source fails. We have been active in the development of this and related titles for decades and have presented several proposals to the technical committee. Public response on the Second Draft of the 2025 revision will be received until March 27, 2024.

Electrical building, World’s Columbian Exposition, Chicago (1892)

FREE ACCESS to the 2022 Edition of NFPA 110 Standard for Emergency and Standby Power Systems

The scope of NFPA 110 and NFPA 111 are close coupled  and summarized below:

NFPA 110 Standard for Emergency and Standby Power Systems. This standard contains requirements covering the performance of emergency and standby power systems providing an alternate source of electrical power to loads in buildings and facilities in the event that the primary power source fails.

NFPA 111 Stored Electrical Energy for Emergency and Standby Power Systems. This standard shall cover performance requirements for stored electrical energy systems providing an alternate source of electrical power in buildings and facilities in the event that the normal electrical power source fails.

FIRST DRAFT AGENDA | August 2022

Public comment on the First Draft of the 2025 Edition will be received until May 31, 2023.  

We have advocated in this standard since 1996 and still use the original University of Michigan Workspace; though those workspaces must be upgraded to the new Google Sites during 2021.  We provide a link to the Standards Michigan Workspace and invite you to join any of our electrical colloquia which are hosted jointly with the IEEE Education & Healthcare Facilities Committee four times per month in European and American time zones.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [96-04]

Category: Electrical, Risk

Contact: Mike Anthony, Robert Arno, Neal Dowling, Jim Harvey, Robert Schuerger, Mike Hiler

More

ITM of Emergency Power Systems

Planning for Higher Education Journal: Revisiting the Campus Power Dilemma: A Case Study

Tom is a long-time colleague and friend so Mike happily posts his content:

454c656374726f746563686e6f6c6f6779

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content