Stationary Energy Storage Systems

Loading
loading...

Stationary Energy Storage Systems

April 23, 2025
[email protected]

No Comments

Should every campus building generate its own power? Sustainability workgroups are vulnerable to speculative hype about net-zero buildings and microgrids. We remind sustainability trendsniffers that the central feature of a distributed energy resource–the eyesore known as the university steam plant–delivers most of the economic benefit of a microgrid. [Comments on Second Draft due April 29th] #StandardsMassachusetts

“M. van Marum. Tweede vervolg der proefneemingen gedaan met Teyler’s electrizeer-machine, 1795” | An early energy storage device | Massachusetts Institute of Technology Libraries

We have been following the developmental trajectory of a new NFPA regulatory product — NFPA 855 Standard for the Installation of Stationary Energy Storage Systems — a document with ambitions to formalize the fire safety landscape of the central feature of campus microgrids by setting criteria for minimizing the hazards associated with energy storage systems.

The fire safety of electric vehicles and the companion storage units for solar and wind power systems has been elevated in recent years with incidents with high public visibility.  The education industry needs to contribute ideas and data to what we call the emergent #SmartCampus;an electrotechnical transformation — both as a provider of new knowledge and as a user of the new knowledge.

Transcripts of technical deliberation are linked below:

2026 Public Input Report (705 pages) § 2026 Second Draft Meeting Agenda (912 pages)

Comment on the 2026 revision received by March 27, 2025 will be heard at the NFPA June 2025 Expo through NFPA’s NITMAM process.

University of Michigan | Average daily electrical load across all Ann Arbor campuses is on the order of 100 megawatts

A fair question to ask: “How is NFPA 855 going to establish the standard of care any better than the standard of care discovered and promulgated in the NFPA 70-series and the often-paired documents NFPA 110 and NFPA 111?”  (As you read the transcript of the proceedings you can see the committee tip-toeing around prospective overlaps and conflicts; never a first choice).

Suffice to say, the NFPA Standards Council has due process requirements for new committee projects and, obviously, that criteria has been met.   Market demand presents an opportunity to assemble a new committee with fresh, with new voices funded by a fresh set of stakeholders who, because they are more accustomed to advocacy in open-source and consortia standards development platforms, might have not been involved in the  more rigorous standards development processes of ANSI accredited standards developing organizations — specifically the NFPA, whose members are usually found at the top of organization charts in state and local jurisdictions.  For example we find UBER — the ride sharing company — on the technical committee.  We find another voice from Tesla Motors.  These companies are centered in an industry that does not have the tradition of leading practice discovery and promulgation that the building industry has had for the better part of two hundred years.

Our interest in this standard lies on both sides of the education industry — i.e. the academic research side and the business side.  For all practical purposes, the most credible, multi-dimensional and effective voice for lowering #TotalCostofOwnership for the emergent smart campus is found in the tenure of Standards Michigan and its collaboration with IEEE Education & Healthcare Facilities Committee (E&H).  You may join us sorting through the technical, economic and legal particulars and day at 11 AM Eastern time.   The IEEE E&H Committee meets online every other Tuesday in European and American time zones; the next meeting on March 26th.  All meetings are open to the public.

University of California San Diego Microgrid

You are encouraged to communicate directly with Brian O’Connor, the NFPA Staff Liaison for specific questions.  We have some of the answers but Brian is likely to have all of them.   CLICK HERE for the NFPA Directory.  Additionally, NFPA will be hosting its Annual Conference & Expo, June 17-20 in San Antonio, Texas; usually an auspicious time for meeting NFPA staff working on this, and other projects.

The prospect of installing of energy storage technologies at every campus building — or groups of buildings, or in regions — is clearly transformational if the education facilities industry somehow manages to find a way to drive the cost of operating and maintaining many energy storage technologies lower than the cost of operating and maintaining a single campus distributed energy resource.  The education facility industry will have to train a new cadre of microgrid technology specialists who must be comfortable working at ampere and voltage ranges on both sides of the decimal point that separates power engineers from control engineers.  And, of course, dynamic utility pricing (set by state regulatory agencies) will continue to be the most significant independent control variable.

Finding a way to make all this hang together is the legitimate work of the academic research side of the university.   We find that sustainability workgroups (and elected governing bodies) in the education industry are vulnerable to out-sized claims about microgrids and distributed energy resources; both trendy terms of art for the electrotechnical transformation we call the emergent #SmartCampus.

We remind sustainability trendsniffers that the central feature of a distributed energy resource — the eyesore known as the university steam plant — bears most of the characteristics of a microgrid.   In the videoclip linked below a respected voice from Ohio State University provides enlightenment on this point; even as he contributes to the discovery stream with a study unit.

Ohio State University McCracken Power Plant

Issue: [16-131]

Category:  District Energy, Electrical, Energy, Facility Asset Management, Fire Safety, Risk Management, #SmartCampus, US Department of Energy

Colleagues: Mike Anthony, Bill Cantor ([email protected]). Mahesh Illindala

Standards MassachusettsStandards Texas, Standards Ohio

*It is noteworthy that (NFPA 70) National Electrical Code-Making Panel 1 has appropriated vehicle-to-grid installations into its scope.

 


Princeton University Power Plant | Click on image

LEARN MORE:

Related Post: Electrical Safety Research Advisory Committee

Bibiography: Campus Microgrids

Higher Education Facilities Conference: The Rise of University Microgrids

 


Mahesh Illindala enlightens understanding of what microgrid is, and is not:


Reliability

April 22, 2025
[email protected]
No Comments

P(A)

Today at the usual hour we introduce the project which will require harvesting power reliability statistics from any and all educational settlements willing to share their data.  As the links before demonstrate, we have worked in this domain for many years.  Join us with the login credentials at the upper right of our home page.

Types of Probability Distribution & Representative Calculation

SDC3006_Power_System_Reliability_WG_Minutes_2024-05-20

WG Meeting Agenda August 2024_final


Indiana University Internet Archive: “A Mathematical Theory of Reliability” by Richard E. Barlow and Frank Proschan (1965)

This paper introduced the concept of reliability theory and established a mathematical framework for analyzing system reliability in terms of lumped parameters. It defined important concepts such as coherent systems, minimal cut sets, and minimal path sets, which are still widely used in reliability engineering.

IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

“Railroad Sunset” | Edward Hopper

We are tooling up to update the failure rate tables of IEEE 493 Design of Reliable Industrial and Commercial Power Systems; collaborating with project leaders but contributing to an essential part of the data design engineers use for scaling their power system designs.  The project is in its early stages.  We are formulating approaches about how to gather data for assemble a statistically significant data set.

Today at the usual hour we introduce the project which will require harvesting power reliability statistics from any and all educational settlements willing to share their data.  As the links before demonstrate, we have worked in this domain for many years.

Join us with the login credentials at the upper right of our home page.

 

2017 National Electrical Code § 110.5

2028 National Electrical Safety Code

Reliability Analysis for Power to Fire Pumps

Interoperability of Distributed Energy Resources


“On the Mathematical Theory of Risk and Some Problems in Distribution-Free Statistics” by Frank Proschan (1963): This paper introduced the concept of increasing failure rate (IFR) and decreasing failure rate (DFR) distributions, which are crucial in reliability modeling and analysis.

“Reliability Models for Multiple Failures in Redundant Systems” by John F. Meyer (1965): This paper addressed the problem of reliability analysis for redundant systems, which are systems with multiple components designed to provide backup in case of failure.

“Reliability of Systems in Series and in Parallel” by A. T. Bharucha-Reid (1960): This work analyzed the reliability of systems composed of components arranged in series and parallel configurations, which are fundamental building blocks of more complex systems.

“A Stochastic Model for the Reliability of Modular Software Systems” by John E. Gaffney, Jr. and Thomas A. Dueck (1980): This paper introduced one of the earliest models for software reliability, extending the concepts of reliability theory to the field of software engineering.

“Redundancy Techniques for Computing Systems” by John von Neumann (1956): This report by the pioneering computer scientist John von Neumann explored the use of redundancy techniques, such as triple modular redundancy, to improve the reliability of computing systems.

Open for Comment: Types of Reliability Probability Distributions

Gallery: Great Lakes

April 22, 2025
[email protected]
, , , , ,
No Comments

The Great Lakes contain enough fresh water to cover the land area of the entire United States under 3 meters of water.

We collect 15 video presentations about Great Lake water safety and sustainability prepared by the 8 Great Lake border state colleges and universities and their national and international partners in Canada.

Tour Around Lake Superior

 

 

Water 100


When the wicked problems of peace and economic inequality cannot be solved, political leaders, and the battalions of servile administrative muckety-mucks who report to them, resort to fear-mongering about an imagined problem to be solved centuries hence assuming every other nation agrees on remedies of its anthropogenic origin.  We would not draw attention to it were it not that large tranches of the global academic community are in on the grift costing hundreds of billions in square-footage for research and teaching hopelessness to our children and hatred of climate change deniers.

Before the internet is scrubbed of information contrary to climate change mania, we recommend a few titles:

“Gulliver’s Travels” Jonathan Swift | Start at Chapter 5, PDF page 235

The Mad, Mad, Mad World of Climatism: Mankind and Climate Change Mania

Climate Change Craziness Exposed: Twenty-One Climate Change Denials of Environmentalists

Climate Psychosis

Gallery: Other Ways of Knowing Climate Change

 

Colloquy (April)

April 21, 2025
[email protected]
No Comments

Gallery: Doctoral Dissertations

About

American School and University: Northern Kentucky University plans to expand its main science research building


The Business of Standards Never Stops

April 21, 2025
[email protected]
, , ,
No Comments

Standards for a Kitchen Symphony | November/December 2024

ASTM International (formerly known as the American Society for Testing and Materials) is a globally recognized organization that develops and publishes technical standards for a wide range of products, systems, and services. These standards are used by manufacturers, regulatory bodies, and other stakeholders to ensure that products and services are safe, reliable, and of high quality.

In the field of measurement science, ASTM plays an important role in developing standards and guidelines for measurement techniques and practices. These standards cover a wide range of topics related to measurement science, including the calibration of instruments, the characterization of measurement systems, and the validation of measurement results. They are used by researchers, engineers, and other professionals in academia, industry, and government to ensure that measurements are accurate, precise, and reliable.

ANSI Public Review

 

ASTM standards for measurement science are developed through a process that involves input from experts in the field, including researchers, industry professionals, and regulatory bodies. These standards are updated regularly to reflect advances in measurement science and technology, as well as changes in industry and regulatory requirements.  This is a far better way to discover and promulgate leading practice.  In fact, there are regulations intended to restrain the outsized influence of vertical incumbents in legislative precincts where market-making happens.

Federal Participation in Consensus Standards

Previous Posts

Language Proficiency

Standard Specification for 100 % Cotton Denim Fabrics

Performance of Buildings

$500 Capstone Project Stipend Available to Students

Where There is Smoke…There Doesn’t Have to be Fire

Athletic Performance Properties of Indoor Sports Floor Systems

Professor of the Year

Women in Standards

 

Late Night Breakfast

April 20, 2025
[email protected]
, , ,
No Comments

 

Late Night Breakfast is a tradition where students take a break from studying

for final examinations and served breakfast by the Faculty and Staff.

 

Southwestern University | Williamson County Texas

Southwestern University Consolidated Financial Statements June 2023 | $643.4M

Behind the Artifact: The Melville Compass

International Building Code Section 302 Group A-2 occupancy includes assembly uses intended for food and/or drink consumption

Facilities Management

Related:

Midnight Breakfast

Kitchens 300

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background