Public Broadcasting Act of 1967

Loading
loading...

Public Broadcasting Act of 1967

August 27, 2023
mike@standardsmichigan.com

No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

How Blockchain Will Change Construction

August 27, 2023
mike@standardsmichigan.com
, , ,
No Comments

Autodesk Construction Cloud

Blockchain and distributed ledger technology has the potential to improve building construction in several ways:

• Asset Tokenization: Some projects explore the idea of tokenizing real estate assets, including buildings, which can enable fractional ownership and increase liquidity in the real estate market.

Supply chain management: Blockchain can be used to track building materials throughout the supply chain, from the manufacturer to the construction site. This can increase transparency and traceability, reduce fraud and counterfeiting, and improve quality control.

Payment processing: Blockchain can be used to automate payment processing for construction projects, allowing for faster and more efficient payments that are verified through the blockchain. This can reduce payment disputes and delays and increase the speed of project completion.

Smart contracts: Smart contracts can be used in building construction to automatically execute contractual obligations, such as making payments or releasing building plans when certain conditions are met. This can reduce the need for intermediaries and improve the efficiency of the construction process.

Building maintenance and management: Blockchain can be used to create a decentralized database of building maintenance and management records, such as warranties, repair records, and energy usage. This can make it easier for building owners and managers to track and manage building maintenance, reducing downtime and costs.

Decentralized project management: Blockchain can be used to create a decentralized platform for project management, allowing all stakeholders to have access to the same information and reducing the risk of miscommunication and errors.

Ethereum ERC-20

Emergent vendors in this domain:

ImmVRse is a blockchain-based platform that is being developed to help with the design and construction of educational facilities. The platform uses virtual reality to create 3D models of buildings, which can be used to identify potential design flaws and optimize construction plans. The platform also uses blockchain to track project progress, reduce disputes, and facilitate payments.

Solar DAO is a blockchain-based platform that is being developed to fund renewable energy projects, including solar energy systems for educational facilities. The platform allows investors to fund solar energy projects and receive dividends based on the amount of energy generated. The platform also uses blockchain to track project progress and verify energy generation.

Blockcerts is a blockchain-based platform that is being used for digital credentialing in education. The platform allows educational institutions to issue digital certificates and diplomas that are verified through the blockchain, making them more secure and tamper-proof.

Widespread adoption of these technologies will require collaboration and standardization within the industry.

How Blockchain Will Change Construction

Don Tapscott – Ricardo Viana Vargas

Blockchain technology is among the most disruptive forces of the past decade. Its power to record, enable, and secure huge numbers and varieties of transactions raises an intriguing question: Can the same distributed ledger technology that powers bitcoin also enable better execution of strategic projects in a conservative sector like construction, involving large teams of contractors and subcontractors and an abundance of building codes, safety regulations, and standards?

“Increasingly, we are thinking more carefully about when and where we need to compete and what can we share and collaborate on,” said David Bowcott, global director of growth, innovation, and insight in Aon’s global construction and infrastructure group. Using blockchain to automate the contractual processes and paperwork underpinning these complex projects could save money, free up valuable resources, and speed up project delivery. (Unless otherwise noted, quotes are from interviews we conducted as part of our research.)

Harvard University

 

Bibliography

On-Site Construction Quality Inspection Using Blockchain and Smart Contracts

Construction Blockchain Construction

Blockchain for Construction/Real Estate

Physics Classrooms and Laboratories

August 26, 2023
mike@standardsmichigan.com
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Softball Playfield

August 26, 2023
mike@standardsmichigan.com

No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Subversion®

August 26, 2023
mike@standardsmichigan.com

No Comments

“Mapping the Apache Software Foundation” / An Antic Disposition

Many units on the business side of the education industry directly employ a larger software staff than all the electricians, HVAC mechanics and plumbers combined.  Software staff must continually “maintain” enterprise software to keep information flow steady, secure and interoperable with other platforms.

Software upgrade versioning is an essential part of producing that result.  At a fine-grained level, revision control is used for keeping track of incrementally different versions of information, whether or not this information is computer software.   Software action is tracked using two different software versioning schemes—internal version number that may be incremented many times in a single day, such as a revision control number, and a release version that typically changes far less often, such as semantic versioning or a project code name.

Because the Apache catalog is open source, stakeholders can enter and leave the community at any time.   We encourage software experts with sensitivity to cost constraints to become involved in the Apache consensus product development process.   We always encourage direct communication:

Getting Involved with Apache Subversion and the Community

We keep all software consensus products on the standing agenda of our Information & Communications (ICT) technology teleconferences.   See our CALENDAR for the next online meeting; open to everyone.

Apache Software Foundation 2007

 

Lively 200

August 25, 2023
mike@standardsmichigan.com

No Comments

Curtain for the Lviv Theatre of Opera and Ballet

 

“What art is, in reality, is this missing link,  not the links which exist.

It’s not what you see that is art; art is the gap”

— Marcel Duchamp

 

Today we refresh our understanding of the literature that guides the safety and sustainability goals of lively art and special event setting on the #WiseCampus.  Consortia have evolved quickly in recent years, leading and lagging changes in the content creation and delivery domain.  With this evolution a professional discipline has emerged that requires training and certification in the electrotechnologies that contribute to “event safety”; among them:

ASHRAE International

Standard 62.1: This standard establishes minimum ventilation rates and indoor air quality requirements for commercial buildings, including theaters and auditoriums.

Standard 55: This standard specifies thermal comfort conditions for occupants in indoor environments, which can have an impact on air quality.

Audio Engineering Society

Audio Visual and Experience Association

Entertainment Services and Technology Association

Event Safety Alliance

International Code Council

International Building Code: Section 303.2 Assembly Group A-1

Illumination Engineering Society

RP-16-17 Lighting for Theatrical Productions: This standard provides guidance on the design and implementation of lighting systems for theatrical productions. It includes information on the use of color, light direction, and light intensity to create different moods and effects.

RP-30-15 Recommended Practice for the Design of Theatres and Auditoriums: This standard provides guidance on the design of theaters and auditoriums, including lighting systems. It covers topics such as seating layout, stage design, and acoustics, as well as lighting design considerations.

DG-24-19 Design Guide for Color and Illumination: This guide provides information on the use of color in lighting design, including color temperature, color rendering, and color mixing. It is relevant to theater lighting design as well as other applications.

National Center for Spectator Sports Safety and Security

National Fire Protection Association

Life Safety Code

National Electrical Code

Articles 518-540: Arenas, Lecture Halls & Theaters

Society of Motion Picture Technology Engineers

Professional Lighting and Sound Association

Dance and Athletic Floor Product Standards: ASTM F2118, EN 14904, DIN 18032-2

Incumbent standards-setting organizations such as ASHRAE, ASTM, ICC, IEEE, NFPA have also discovered, integrated and promulgated event safety and sustainability concepts into their catalog of best practice titles; many already incorporated by reference into public safety law.   We explore relevant research on crowd management and spectator safety.

Planning and Managing Security for Major Special Events

The circumstances of the pandemic has made “re-rationalization” of education community spaces an urgent priority.   Today at 15:00 UTC we pick through the concepts in play.  Use the login credentials at the upper right of our home page.

More

International Code Council (N.B. Changes to its Code Development Process) 

International Building Code: Entertainment Occupancies

Section 410: Stages, Platforms and Technical Production Areas

National Electrical Code: Articles 518 – 540 

Code-Making Panel 15 (NEC-P15): Public Input Report 10/1/2020

Code-Making Panel 15 (NEC-P15): Public Comment Report  11/18/2021

ASHRAE 62.1 Ventilation for Acceptable Indoor Air Quality

Princeton University: Set Design & Construction

Building the Virtual Stage: A System for Enabling Mixed Reality Theatre

University of California: Special Effects Safety and Loss Prevention

University of San Francisco Special Effects Safety

Dance Floors v. Sports Floors

Eine kleine Nachtmusik

August 24, 2023
mike@standardsmichigan.com
,
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Flynn Effect

August 24, 2023
mike@standardsmichigan.com
, ,
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Social networks and culture in birds

August 24, 2023
mike@standardsmichigan.com
, ,
No Comments

Birds are social creatures and many species have complex social networks. Social networks are defined as the patterns of social interactions between individuals within a population. Here are some things that are known about the social networks of birds:

  1. Flocking behavior: Many bird species form flocks, which are large groups of individuals that fly together and exhibit coordinated behavior. Flocking behavior is thought to help birds reduce the risk of predation, share information about food sources and mating opportunities, and maintain social connections with other birds.  §1202 of the International Building Code prohibits building envelope openings that encourage flocking behavior in attics, 
  2. Communication: Birds use a variety of vocal and visual cues to communicate with one another, such as calls, songs, displays, and body language. Communication plays an important role in establishing and maintaining social connections between individuals.
  3. Social hierarchies: Within bird flocks, there may be social hierarchies, where some individuals have more dominant positions than others. Dominant individuals may have access to better food sources, mating opportunities, and nesting sites.
  4. Mate choice: Many bird species choose mates based on social signals, such as displays, vocalizations, and courtship behavior. Mate choice can influence the structure of social networks within a population.
  5. Information sharing: Birds may share information about food sources and predator threats with one another. For example, some bird species engage in “public information use,” where they use the behavior of other individuals as a signal about the quality of a food source or the presence of predators.
  6. Family bonds: Some bird species form long-lasting family bonds, where parents and offspring remain together for extended periods of time. Family bonds can influence the social structure of bird populations and may contribute to the formation of social networks.

Overall, the social networks of birds are complex and dynamic, and play important roles in many aspects of bird behavior, including mating, foraging, and avoiding predators. Studying bird social networks can provide insights into the evolution of social behavior and the ecological factors that shape animal populations.  We examine the risks (and reward) of bird behavior on education community campuses.


Birds present several hazards to overhead electric and telecommunication circuits:

  • Electrocution: Birds that perch or nest on power lines or other electrical equipment can come into contact with live electrical wires and be electrocuted if their body presents a path to ground potential. 
  • Nesting: Birds may build nests on or near power lines or other electrical equipment, which can create a fire hazard if the nest materials come into contact with electrical components. Nests can also cause power outages if they interfere with the electrical flow or if birds build nests in inconvenient locations, such as on transformers or other important components.
  • Collisions: Birds may collide with power lines while in flight, which can cause injury or death to the birds and also damage power lines or equipment. In some cases, these collisions can also cause power outages or fires.
  • Droppings: Bird droppings can build up on power lines and electrical equipment, which can create a safety hazard if the droppings come into contact with electrical components. Droppings can also cause corrosion or damage to equipment over time.

Accordingly, the 2023 National Electrical Safety Code specifies minimum clearances between power lines and surrounding trees and vegetation to help prevent birds from coming into contact with the lines; requires the use of bird guards or other protective devices on power lines in areas where birds are likely to perch or nest and, where possible; removal of nests from power lines and equipment to prevent fire hazards and equipment damage.

Additionally, the U.S. Fish and Wildlife Service has developed guidelines for the protection of birds and other wildlife from power line hazards.  These guidelines provide recommendations for utilities on how to identify and manage potential bird hazards on power lines and equipment.  The International Electrotechnical Commission has developed similar standards

Flight is the most complex form of movement in the animal kingdom. Bird research has informed how humans design airplanes.  For example:

  • Wing design: Bird wings have evolved over millions of years to provide efficient lift and maneuverability. Researchers have studied the shape, size, and structure of bird wings to design airplane wings that are more efficient and fuel-efficient. For example, the shape of the wings of the Albatross inspired the design of the wings of the Boeing 777, which has one of the highest fuel efficiencies of any commercial aircraft.
  • Flight control: Researchers have studied how birds control their flight, particularly during takeoff and landing. This research has led to the development of technologies such as wing flaps, slats, and spoilers, which help airplanes achieve better control during takeoff and landing.
  • Aerodynamics: The study of bird flight has also helped researchers understand the complex physics of aerodynamics, such as airflow patterns, lift, drag, and turbulence. This understanding has led to the development of more advanced computer simulations and wind tunnel testing, which are used to design airplanes that are more aerodynamically efficient.
  • Materials: Birds have lightweight but strong bones and feathers, which have inspired researchers to develop new lightweight materials for use in airplane construction. For example, carbon fiber composites, which are used extensively in modern airplanes, were inspired by the lightweight but strong structure of bird bones.

There are standards and regulations for bird control in various industries and settings. These standards and regulations aim to prevent bird strikes, which can be dangerous for aircraft, and to manage bird populations that can cause damage or spread disease.  For example:

  • The Federal Aviation Administration in the United States requires airports to have a Wildlife Hazard Management Plan that includes bird control measures. This plan must address the potential for bird strikes and detail strategies for reducing the risk, such as habitat modification, bird scaring techniques, and lethal control methods in extreme cases.
  • In the agriculture industry, there are guidelines and regulations for bird control to prevent crop damage and protect public health. The US Environmental Protection Agency regulates the use of bird repellents and bird poisons to ensure that they are used safely and do not harm non-target species or the environment.  
  • There are also international standards for bird control in certain industries, such as the oil and gas industry, which has guidelines for managing bird populations that could be impacted by oil spills.

“A Girl Writing; The Pet Goldfinch” 1870 Henriette Browne

Bird control on college and university campuses should prioritize humane and non-lethal methods to manage bird populations and prevent bird-related hazards. Here are some best practices for bird control on college and university campuses:

  • Habitat modification: Modify the campus environment to make it less attractive to birds. This may involve removing or trimming trees and vegetation that provide food and shelter for birds, reducing open water sources, and using bird netting or barriers to block access to areas where birds may nest.
  • Education: Educate students, faculty, and staff about the importance of bird control and the negative impacts of feeding birds on campus. Encourage the campus community to report bird-related hazards, such as bird nests in building ventilation systems or bird droppings on walkways.
  • Non-lethal deterrents: Use non-lethal bird deterrents, such as visual scare devices, noise makers, and bird repellents, to discourage birds from congregating on campus. These methods are often effective in the short term but may need to be rotated or changed periodically to maintain their effectiveness.
  • Integrated pest management: Implement an integrated pest management (IPM) plan that includes bird control measures. IPM is a holistic approach that combines multiple strategies to manage pests, including birds, in an environmentally responsible and effective manner.
  • Monitoring and evaluation: Monitor the effectiveness of bird control measures on campus and evaluate their impact on bird populations and hazards. Adjust strategies as needed to ensure that they are effective and humane.

Overall, a comprehensive and humane approach to bird control on college and university campuses should prioritize prevention and management of bird hazards while minimizing negative impacts on bird populations and the environment.

Related Research

Design and Improvement of Anti-Bird Devices for Transmission Line Towers

Research on bird droppings flashover of 110kV transmission line composite insulator insulation-coated grading ring

Application and Challenges of an IoT Bird Repeller System As a result of Bird Behavior

Bird-caused Damage Risk Assessment System for Power Grid Based on Intelligent Data Platform

Research and Implementation of Birds and Floating Objects Target Detection Technology in Transmission Lines

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content