Critical Operations Power Systems

Loading
loading...

Critical Operations Power Systems

October 10, 2024
[email protected]
, ,
No Comments


The original University of Michigan codes and standards enterprise advocated actively in Article 708 Critical Operations Power Systems (COPS) of the National Electrical Code (NEC) because of the elevated likelihood that the education facility industry managed assets that were likely candidates for designation critical operations areas by emergency management authorities.

Because the NEC is incorporated by reference into most state and local electrical safety laws, it saw the possibility that some colleges and universities — particularly large research universities with independent power plants, telecommunications systems and large hospitals  — would be on the receiving end of an unfunded mandate.   Many education facilities are identified by the Federal Emergency Management Association as community storm shelters, for example.

As managers of publicly owned assets, University of Michigan Plant Operations had no objection to rising to the challenge of using publicly owned education facilities for emergency preparedness and disaster recovery operations; only that meeting the power system reliability requirements to the emergency management command centers would likely cost more than anyone imagined — especially at the University Hospital and the Public Safety Department facilities.  Budgets would have to be prepared to make critical operations power systems (COPS) resistant to fire and flood damages; for example.

Collaboration with the Institute of Electrical and Electronic Engineers Industrial Applications Society began shortly after the release of the 2007 NEC.  Engineering studies were undertaken, papers were published (see links below) and the inspiration for the IEEE Education & Healthcare Facilities Committee developed to provide a gathering place for power, telecommunication and energy professionals to discover and promulgate leading practice.   That committee is now formally a part of IEEE and collaborates with IAS/PES JTCC assigned the task of harmonizing NFPA and IEEE electrical safety and sustainability consensus documents (codes, standards, guidelines and recommended practices.

The transcript of NEC Code Making Panel 13 — the committee that revises COPS Article 708 every three years — is linked below:

NEC CMP-13 First Draft Balloting

NEC CMP-13 Second Draft Balloting

The 2023 Edition of the National Electrical Code does not contain revisions that affect #TotalCostofOwnership — only refinement of wiring installation practices when COPS are built integral to an existing building that will likely raise cost.  There are several dissenting comments to this effect and they all dissent because of cost.   Familiar battles over overcurrent coordination persist.

Our papers and proposals regarding Article 708 track a concern for power system reliability — and the lack of power  — as an inherent safety hazard.   These proposals are routinely rejected by incumbent stakeholders on NEC technical panels who do not agree that lack of power is a safety hazard.  Even if lack of power is not a safety hazard, reliability requirements do not belong in an electrical wiring installation code developed largely by electricians and fire safety inspectors.  The IEEE Education & Healthcare Facilities Committee (IEEE E&H) maintains a database on campus power outages; similar to the database used by the IEEE 1366 committees that develop reliability indices to enlighten public utility reliability regulations.

Public input on the 2026 revision to the NEC will be received until September 7th.  We have reserved a workspace for our priorities in the link below:

2026 National Electrical Code Workspace

Colleagues: Robert Arno, Neal Dowling, Jim Harvey

 

LEARN MORE:

IEEE | Critical Operations Power Systems: Improving Risk Assessment in Emergency Facilities with Reliability Engineering

Consuting-Specifying Engineer | Risk Assessments for Critical Operations Power Systems

Electrical Construction & Maintenance | Critical Operations Power Systems

International City County Management Association | Critical Operations Power Systems: Success of the Imagination

Facilities Manager | Critical Operations Power Systems: The Generator in Your Backyard

Art, Design & Fashion Studios

October 10, 2024
[email protected]
,
No Comments

Art presents a different way of looking at things than science; 

one which preserves the mystery of things without undoing the mystery.

Sir Roger Scruton

“Interior de Ateliê” 1898 Rafael Frederico

We are guided by four interdependent titles that set the standard of care for safety and sustainability of occupancies supporting the fine arts in education communities.

(1)  Chapter 43: Spraying, Dipping and Coating Using Flammable or Combustible Material of NFPA 1: Fire Code.   As a “code” the public has free access to the current 2021 Edition , and Chapter 43 at the link below:

NFPA 1 Fire Code / Chapter 43 Spraying, Dipping and Coating Using Flammable or Combustible Materials

You get a sense of the back-and-forth among the technical committee members from the transcripts of committee activity linked below:

First Revisions Report (282 pages)

Our interest lies in fire safety provisions for educational occupancies with activity involving paint, chemicals used with paint (art studios) and Class III combustible materials (garment design & prototyping).

(2) NFPA also has another title — NFPA 33 Standard for Spray Application Using Flammable or Combustible Materials — provides more detail for instructional and facility maintenance operations activity.

(3) NFPA 101 Life Safety Code, much of which is derived from NFPA 1 (See: “How the Fire Code and Life Safety Code Work Together“)

(4) Finally, the International Code Council develops a competitor title — 2021 International Fire Code — which also provides fire safety standards for art, design and fashion studio safety.  The IFC is developed in the Group A tranche of titles:

2021/2022 Code Development Group A

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

We encourage direct participation by education industry user-interests in the ICC and the NFPA code development process.  A user interest in education community would have a job title similar to the following: Principal, Dean, President, Chief of Business Operations, Facility Manager, Trade Shop Foreman.

Harvard University

We maintain all four titles identified in this post on the standing agenda of our Prometheus (fire safety) and Fine Arts colloquia.   See our CALENDAR for the next online meeting; open to everyone.

Issue: [10-31] [16-64]

Category: Fire Safety

Colleagues: Mike Anthony, Josh Evolve, Marcelo Hirschler


More

Northeastern University: Safety Guide for Art Studios

Princeton University: Art Safety

University of Chicago Art Studio Safety Policy

 

Scrumpy

October 9, 2024
[email protected]

No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.

International Mechanical Code

October 9, 2024
[email protected]
No Comments

“Plaza Italia” 1971 | Giorgio de Chirico

 

After architectural trades, the mechanical technologies occupy the largest part of building construction:

  1. HVAC:
    • Heating Systems: Technologies include furnaces, boilers, heat pumps, and radiant heating systems.
    • Ventilation Systems: Incorporating technologies like air handlers, fans, and ductwork to ensure proper air circulation.
    • Air Conditioning Systems: Including central air conditioning units, split systems, and variable refrigerant flow (VRF) systems.
  2. Plumbing:
    • Water Supply Systems: Involving technologies for water distribution, pumps, and pressure regulation.
    • Sanitary Systems: Including drainage, sewage systems, and waste disposal technologies.
    • Fixtures and Faucets: Incorporating technologies for sinks, toilets, showers, and other plumbing fixtures.
  3. Fire Protection:
    • Fire Sprinkler Systems: Employing technologies like sprinkler heads, pipes, pumps, and water tanks.
    • Fire Suppression Systems: Including technologies such as gas-based or foam-based suppression systems.
  4. Energy Efficiency Technologies:
    • Energy Management Systems (EMS): Utilizing sensors, controllers, and software to optimize energy consumption in HVAC systems.
    • Energy Recovery Systems: Incorporating technologies like heat exchangers to recover and reuse energy from exhaust air.
  5. Building Automation (BAS):
    • Control Systems: Using sensors, actuators, and controllers to manage and automate various mechanical systems for optimal performance and energy efficiency.
    • Smart Building Technologies: Integrating with other building systems for centralized control and monitoring.
  6. Materials and Construction Techniques:
    • Piping Materials: Selecting appropriate materials for pipes and fittings based on the application.
    • Prefab and Modular Construction: Leveraging off-site fabrication and assembly for mechanical components.

Our examination of the movement in best practice in the mechanical disciplines usually requires an understanding of first principles that appear in the International Building Code

2024 International Mechanical Code

Current Code Development Cycles (2024-2026)

2024/2025/2026 Code Development Schedule

“On the Mechanical Equivalent of Heat” | 1850 James Prescott Joule | Proceedings of the Royal Society of London

Representative Design Guidelines:

Michigan State University

Florida State University

US Department of Energy: Sandia National Laboratories

Related:

ICC Releases 2024 International Codes

Group A Model Building Codes

We are waiting for the link to the Complete Monograph for the Group A cycle in which one of our proposals (Chapter 27 Electrical) will be heard at the April 2023 Committee Action Hearings in Orlando.


Superceded:

Because of the larger, disruptive concepts usually require more than one revision cycle — i.e. 3 to 9 years — it is wise to track those ideas in the transcripts of public hearings on the revisions.   For example, the ICC Group A Committee Action Hearings were completed (virtually) in May 2021.  The complete monograph of proposals is linked below:

2021 Group A Complete Proposed Changes

Transcript of committee response is linked below:

2021 REPORT OF THE COMMITTEE ACTION HEARINGS ON THE 2021 EDITIONS OF THE GROUP A INTERNATIONAL CODES

A sample of the topics that need attention that involve the mechanical disciplines (e.g. energy, environmental air, water) :

  • Soil gas and carbon monoxide detection and mitigation
  • Minimum number of required plumbing fixtures in schools and higher education community facilities
  • Fixtures for adult changing stations and gender neutral toilet and bathing facilities
  • Fat, oil and grease interceptors in kitchens
  • Dormitories, residence halls

There are others ideas that can be tracked in the most recent Group B Hearings included April 6th:

LIVE: I-Code Group B Public Comment Hearings

Proposals for the 2024 IMC revision will be accepted until January 7, 2024.  We maintain this title among our core titles during our periodic Mechanical teleconferences.   See our CALENDAR for the next online meeting; open to everyone.

"Microgrids represent a transformational opportunity in how energy is generated, delivered, and consumed" - Robert F. Kennedy, Jr.

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

Issue: [Various]

Colleagues:  Mike Anthony, Richard Robben, Larry Spielvogel


Group A includes the following codes:

  • International Building Code (IBC) – Egress, Fire Safety, General Portions
  • International Fire Code (IFC)
  • International Fuel Gas Code (IFGC)
  • International Mechanical Code (IMC)
  • International Plumbing Code (IPC)
  • International Private Sewage Disposal Code (IPSDC)
  • International Residential Code (IRC) – Mechanical, Plumbing
  • International Swimming Pool and Spa Code (ISPSC)
  • International Zoning Code (IZC)
  • International Property Maintenance Code (IPMC)
  • International Wildland-Urban Interface Code (IWUIC)

ICC Code Development Process: Important Links

 

Workspace / ICC

 

 

 

 

 

Solarvoltaic PV Systems

October 8, 2024
[email protected]

No Comments

“Icarus” Joos de Momper

National Electrical Code Articles 690 and 691 provide electrical installation requirements for Owner solarvoltaic PV systems that fall under local electrical safety regulations.  Access to the 2023 Edition is linked below;

2023 National Electrical Code

2026 National Electrical Code Second Draft Transcript | CMP-4

Insight into the technical problems managed in the 2023 edition can be seen in the developmental transcripts linked below:

Panel 4  Public Input Report (869 pages)

Panel 4  Second Draft Comment Report (199 pages)

The IEEE Joint IAS/PES (Industrial Applications Society & Power and Energy Society) has one vote on this 21-member committee; the only pure “User-Interest” we describe in our ABOUT.  All other voting representatives on this committee represent market incumbents or are proxies for market incumbents; also described in our ABOUT.

The 2026 National Electrical Code has entered its revision cycle.  Public input is due September 7th.

We maintain these articles, and all other articles related to “renewable” energy, on the standing agenda of our Power and Solar colloquia which anyone may join with the login credentials at the upper right of our home page.   We work close coupled with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in American and European time zones; also open to everyone.

 

 

 

 

Covers” “All the Things You Are”

October 7, 2024
[email protected]
,
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content