Energy 400

Loading
loading...

Energy 400

August 21, 2024
mike@standardsmichigan.com
No Comments

Climate Psychosis | Other Ways of Knowing Climate Change

“The Conquest of Energy” / José Chávez Morado / Universidad Nacional Autónoma de México

We began last year breaking down our coverage of education settlement energy codes and standards into the tranches listed below:

Energy 200: Codes and standards for building premise energy systems.  (Electrical, heating and cooling of the building envelope)

Energy 300: Codes and standards that support the energy systems required for information and communication technology

21 March 2024

Energy 400: Codes and standards for energy systems between campus buildings.  (District energy systems including interdependence with electrical and water supply)

ASHRAE Proposal for a District Cooling Standard

A different “flavor of money” runs through each of these domains and this condition is reflected in best practice discovery and promulgation.  Energy 200 is less informed by tax-free (bonded) money than Energy 400 titles.

Some titles cover safety and sustainability in both interior and exterior energy domains so we simply list them below:

ASME A13.1 – 20XX, Scheme for the Identification of Piping Systems | Consultation closes 6/20/2023

ASME Boiler Pressure Vessel Code

ASME BPVC Codes & Standards Errata and Notices

ASHRAE International 90.1 — Energy Standard for Buildings Except Low-Rise Residential Buildings

Data Center Operations & Maintenance

2018 International Green Construction Code® Powered by Standard 189.1-2017

NFPA 90 Building Energy Code

NFPA 855 Standard for the Installation of Stationary Energy Storage Systems

IEEE Electrical energy technical literature

ASTM Energy & Utilities Overview

Underwriters Laboratories Energy and Utilities

There are other ad hoc and open-source consortia that occupy at least a niche in this domain.  All of the fifty United States and the Washington DC-based US Federal Government throw off public consultations routinely and, of course, a great deal of faculty interest lies in research funding.

Please join our daily colloquia using the login credentials at the upper right of our home page.

References: Energy 400

More

United States Department of Energy

International Energy Agency World Energy Outlook 2022

International Standardization Organization

ISO/TC 192 Gas Turbines

Energy and heat transfer engineering in general

Economics of Energy, Volume: 4.9 Article: 48 , James L. Sweeney, Stanford University

Global Warming: Scam, Fraud, or Hoax?, Douglas Allchin, The American Biology Teacher (2015) 77 (4): 309–313.

Helmholtz and the Conservation of Energy, By Kenneth L. Caneva, MIT Press

International District Energy Association Campus Energy 2023 Conference: February 29-March 2 (Grapevine Texas)

NRG Provides Strategic Update and Announces New Capital Allocation Framework at 2023 Investor Day

Evaluation of European District Heating Systems for Application to Army Installations in the United States

Gallery: Other Ways of Knowing Climate Change

Allston District Energy

Campus Bulk Electrical Distribution

Interdependent Water & Electricity Networks

Interoperability of Inverter-Based Resources

Gallery: Campus Steam Tunnels

Electrical Resource Adequacy

 

From our video archive:


 

Boiler & Pressure Vessel Code

August 21, 2024
mike@standardsmichigan.com

No Comments

“Mechanic and Steam Pump” | Lewis W. Hine (1921)

 

The heating and cooling requirements of K-12 schools, college and university educational, medical research and healthcare delivery campuses are a large market for boiler pressure vessel manufacturers, installers, maintenance personnel and inspectors.  The demand for building new, and upgrading existing boilers — either single building boilers, regional boilers or central district energy boilers — presents a large market for professional engineering firms also.  A large research university, for example, will have dozens, if not well over 100 boilers that heat and cool square footage in all climates throughout the year.  The same boilers provide heating and cooling for data centers, laundry operations, kitchen steam tables in hospitals and dormitories.

The safety rules for these large, complex and frankly, fearsome systems, have been developed by many generations of mechanical engineering professionals in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC).   From the BPVC scope statement:

“…The International Boiler and Pressure Vessel Code establishes rules of safety — relating only to pressure integrity — governing the design, fabrication, and inspection of boilers and pressure vessels, and nuclear power plant components during construction. The objective of the rules is to provide a margin for deterioration in service. Advancements in design and material and the evidence of experience are constantly being added…”

Many state and local governments incorporate the BPVC by reference into public safety regulations and have established boiler safety agencies.  Boiler explosions are fairly common, as a simple internet search on the term “school boiler explosion” will reveal.  We linked one such incident at the bottom of this page.

University of Michigan Central Heating Plant

The 2023 Edition of the BPVC is the current edition; though the document is divided into many sections that change quickly.

ASME Codes & Standards Electronic Tools

ASME Proposals Available For Public Review

ASME Section IV: Rules for the Construction of Heating Boilers (2019)

Public consultation on changes to the standard for controls and safety devices for automatically fired boilers closes September 25th.   

This is a fairly stable domain at the moment.  We direct you elsewhere to emergent topics:

Ghost kitchens gaining steam on college campuses

College: the Next Big Frontier for Ghost Kitchens

Illinois Admin. Code tit. 77, § 890.1220 – Hot Water Supply and Distribution

Design Considerations for Hot Water Plumbing

FREE ACCESS: 2019 ASME Boiler and Pressure Code (Section VI) 

Plumbing

 

 

Two characteristics of the ASME standards development process are noteworthy:

  • Only the proposed changes to the BPVC are published.   The context surrounding a given change may be lost or not seen unless access to previous version is available.  Knowledgeable experts who contribute to the development of the BPVC usually have a previous version, however.  Newcomers to the process may not.
  • The BPVC has several breakout committees; owing to its longer history in the US standards system and the gathering pace of complexity in this technology.

We unpack the ASME bibliography primarily during our Mechanical, Plumbing and Energy colloquia; and also during our coverage of large central laundry and food preparation (Kitchens 100) colloquia.  See our CALENDAR for the next online meeting, open to everyone.

Issue: [12-33] [15-4] [15-161] [16-77] [18-4] [19-157]

Category: District Energy, Energy, Mechanical, Kitchens, Hot Water

Contact: Eric Albert, Richard Robben, Larry Spielvogel

More:

Standards Michigan BPVC Archive

ASME BPVC Resources

Big Ten & Friends Energy Conference 2023

Standards Michigan Workspace (Requires access credentials from bella@standardsmichigan.com).

School Boiler Maintenance Programs: How Safe Are The Children? 

Boiler Explodes at Indiana High School


Hayward Street Geothermal Cooling $20M

August 21, 2024
mike@standardsmichigan.com
,
No Comments

ACTION REQUEST: $20M

Leinweber Computer and Information Science

Leinweber Foundation Gift

Business & Finance: We Make Blue Go

Geothermal cooling plants have far fewer moving parts and thus pay for themselves by combining immediate energy savings, revenue from excess energy or services, government incentives, and long-term operational efficiency. “Classical” payback period depends on factors like the plant’s scale and available incentives through DTE Energy.

1. Energy Cost Savings

  • Reduced Operating Costs: Geothermal systems use the relatively constant temperature of the earth to provide heating and cooling, which can be much more energy-efficient than traditional HVAC systems. This efficiency leads to lower utility bills for the facility, resulting in significant cost savings over time.
  • Lower Maintenance Costs: Geothermal systems generally have fewer moving parts than conventional systems, leading to lower maintenance and repair costs.

2. Revenue Generation

  • Selling Excess Energy: In some cases, geothermal plants can produce more energy than needed for cooling. This excess energy can be sold back to the grid or used for other purposes, providing an additional revenue stream.
  • Leasing and Service Agreements: Some facilities enter into agreements with nearby buildings or industries to provide geothermal cooling services, generating income.

3. Government Incentives and Subsidies

  • Tax Credits and Rebates: Many governments offer financial incentives, such as tax credits, grants, and rebates, for the installation and operation of geothermal systems. These incentives can significantly reduce the upfront costs and improve the payback period.
  • Renewable Energy Certificates(RECs): In some regions, geothermal plants can earn RECs for generating renewable energy. These certificates can be sold to other companies to offset their carbon emissions, generating additional income.

4. Environmental and Social Benefits

  • Carbon Credits: By reducing greenhouse gas emissions compared to traditional systems, geothermal plants can earn carbon credits, which can be sold or traded in carbon markets.
  • Sustainability Branding: Businesses that use geothermal cooling can market themselves as environmentally friendly, potentially attracting more customers or tenants, which indirectly supports the plant’s financial viability.

5. Long-Term Investment

  • Long Lifespan: Geothermal systems typically have a long lifespan (20-50 years), allowing for a long-term return on investment. While the initial capital costs are high, the system’s durability and low operating costs contribute to a favorable payback over time.
  • Resilience Against Energy Price Volatility: Geothermal systems provide protection against fluctuating energy prices, offering stable and predictable costs, which is financially beneficial over the long term.

6. Financing Models

  • Power Purchase Agreements (PPAs): Some geothermal plants are financed through PPAs, where a third party finances the installation and the facility pays for the energy produced, typically at a lower rate than conventional energy sources.
  • Energy Service Companies (ESCOs): These companies can finance, install, and maintain geothermal systems, with the facility paying for the service over time, usually based on the energy savings achieved.

7. Scalability and Integration

  • Integration with Other Renewable Systems: Geothermal cooling can be part of a broader renewable energy strategy, integrating with solar or wind power to further enhance efficiency and reduce costs, improving the overall financial outlook.

Earth Energy Systems

Earth Energy Systems

August 21, 2024
mike@standardsmichigan.com
No Comments

Geothermal systems cool buildings by leveraging the stable temperatures found beneath the Earth’s surface. A geothermal heat pump system consists of a ground loop, heat exchanger, and distribution system.

In cooling mode, the system extracts heat from the building and transfers it to the ground. The ground loop, typically composed of pipes buried horizontally or vertically, circulates a fluid that absorbs heat from the building’s interior. The fluid, warmed by this process, is then pumped through the ground loop where the Earth’s cooler temperatures absorb the heat, effectively dissipating it into the ground.

The cooled fluid returns to the heat pump, which distributes the now-cooler air throughout the building via the distribution system, such as ductwork. This process is highly efficient because the ground maintains a relatively constant temperature year-round, allowing the geothermal system to operate with less energy compared to traditional air-source cooling methods.

At the moment, though the technology has been made practical since Prince Piero Ginori Conti’s discovery in 1904, and has since tracked well in local building codes and environmental regulations, the bibliography for earth energy systems is nascent and relatively thin.  One trade association is emerging from the gathering pace of applications and case studies: Closed-Loop/Geothermal Heat Pump Systems Design and Installation Standards

We maintain the IGSHPA catalog on the standing agenda of our Energy, Mechanical and Air Conditioning colloquia.  See our CALENDAR for the next online meeting; open to everyone.

Partial Bibliography:

Handbook of Best Practices for Geothermal Drilling

Best Practices for Designing Geothermal Systems

Geothermal Direct Use Engineering and Design Guidebook

International Standards

ISO 13612-1:2014 – Heating and cooling systems in buildings — Method for calculation of the system performance and system design for heat pump systems — Part 1: Design and dimensioning.

    • This standard covers the design and performance calculation of geothermal heat pump systems.

ISO 14823:2017 – Intelligent transport systems — Graphic data dictionary.

    • While not specific to geothermal, this standard includes data relevant to various systems, including geothermal energy systems.

ISO 52000-1:2017 – Energy performance of buildings — Overarching EPB assessment — Part 1: General framework and procedures.

    • This standard provides a general framework for assessing the energy performance of buildings, which includes geothermal systems.

IEC 61753-111-7:2014 – Fibre optic interconnecting devices and passive components – Performance standard – Part 111-7: Sealed closures for category S – Subterranean environments.

    • Relevant for the installation of geothermal systems that include fiber optic components in subterranean environments.

North American  Standards

CSA C448: Design and installation of earth energy systems.

ANSI/CSA C448 Series-16 – Design and Installation of Earth Energy Systems.

    • This standard covers the design and installation of geothermal heat pump systems in the United States, providing guidelines on installation practices, materials, and system performance.

ASHRAE Standard 90.1 – Energy Standard for Buildings Except Low-Rise Residential Buildings.

    • This standard sets the minimum energy efficiency requirements for the design and construction of buildings, including the installation of geothermal systems.

IGSHPA Standards – International Ground Source Heat Pump Association (IGSHPA) Standards.

    • The IGSHPA develops standards for the design and installation of geothermal heat pump systems, with a focus on closed-loop systems.

NFPA 54 – National Fuel Gas Code.

    • Although primarily focused on fuel gas systems, this standard may intersect with geothermal systems when they involve hybrid solutions that include gas heating.

EPA Standards for Geothermal Energy (40 CFR Part 144) – Underground Injection Control (UIC) Program.

    • This standard regulates the injection of fluids into underground wells, relevant for geothermal systems that involve deep wells for heat exchange.

UL 1995 – Heating and Cooling Equipment.

    • This standard applies to the safety of heating and cooling equipment, including geothermal heat pumps.

“Neptune’s Horses” 1919 | Walter Crane

Pecan Pie

August 20, 2024
mike@standardsmichigan.com
,
No Comments

University of George Financial Report 2022 | $2.1B

https://en.wikipedia.org/wiki/Pecan_pie

 

University of Georgia: Cranberry Pecan Pie

The popularity of Georgia pecan pie can be attributed to several factors:

  1. Abundance of Pecans: Georgia, particularly in the southern region of the United States, has a favorable climate for pecan trees. Pecans have been grown in Georgia for centuries, and the state has a long history of pecan cultivation. With such abundance, pecans became a staple ingredient in many traditional Southern recipes, including pecan pie.
  2. Southern Culinary Tradition: Southern cuisine, known for its comfort foods and indulgent desserts, heavily features pecans in various recipes. Pecan pie is a classic Southern dessert that has been passed down through generations, becoming deeply ingrained in the culinary heritage of the region. Georgia, as a quintessential Southern state, plays a significant role in promoting and preserving these culinary traditions.
  3. Cultural Significance: Pecan pie is not only a delicious dessert but also holds cultural significance in the South. It is often served during holidays and family gatherings, evoking feelings of warmth, nostalgia, and tradition. The act of sharing a slice of pecan pie with loved ones is a cherished tradition for many families in Georgia and throughout the South.

Standards Georgia

Viking Cafe

August 20, 2024
mike@standardsmichigan.com
,
No Comments

Mercer County is famous for the Battle of Trenton during the American Revolutionary War. On December 26, 1776, General George Washington led a surprise attack across the Delaware River, resulting in a crucial victory against the Hessian forces stationed in Trenton. This victory boosted the morale of the Continental Army and is considered a turning point in the Revolutionary War.

Mercer County Community College Financial Statement 2023: $82,503,849

2024 International Fire Code: Section 606 Commercial Cooking Equipment and Systems

Culinary Students Taught to Cook Up Plant-Based Cuisine

MCCC Welcomes You

Standards New Jersey


Reliability

August 20, 2024
mike@standardsmichigan.com
No Comments

SDC3006_Power_System_Reliability_WG_Minutes_2024-05-20

WG Meeting Agenda August 2024_final


Indiana University Internet Archive: “A Mathematical Theory of Reliability” by Richard E. Barlow and Frank Proschan (1965)

This paper introduced the concept of reliability theory and established a mathematical framework for analyzing system reliability in terms of lumped parameters. It defined important concepts such as coherent systems, minimal cut sets, and minimal path sets, which are still widely used in reliability engineering.

IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

“Railroad Sunset” | Edward Hopper

We are tooling up to update the failure rate tables of IEEE 493 Design of Reliable Industrial and Commercial Power Systems; collaborating with project leaders but contributing to an essential part of the data design engineers use for scaling their power system designs.  The project is in its early stages.  We are formulating approaches about how to gather data for assemble a statistically significant data set.

Today we introduce the project which will require harvesting power reliability statistics from any and all educational settlements willing to share their data.  As the links before demonstrate, we have worked in this domain for many years.

Join us with the login credentials at the upper right of our home page.

 

2017 National Electrical Code § 110.5

2028 National Electrical Safety Code

Reliability Analysis for Power to Fire Pumps

Interoperability of Distributed Energy Resources


“On the Mathematical Theory of Risk and Some Problems in Distribution-Free Statistics” by Frank Proschan (1963): This paper introduced the concept of increasing failure rate (IFR) and decreasing failure rate (DFR) distributions, which are crucial in reliability modeling and analysis.

“Reliability Models for Multiple Failures in Redundant Systems” by John F. Meyer (1965): This paper addressed the problem of reliability analysis for redundant systems, which are systems with multiple components designed to provide backup in case of failure.

“Reliability of Systems in Series and in Parallel” by A. T. Bharucha-Reid (1960): This work analyzed the reliability of systems composed of components arranged in series and parallel configurations, which are fundamental building blocks of more complex systems.

“A Stochastic Model for the Reliability of Modular Software Systems” by John E. Gaffney, Jr. and Thomas A. Dueck (1980): This paper introduced one of the earliest models for software reliability, extending the concepts of reliability theory to the field of software engineering.

“Redundancy Techniques for Computing Systems” by John von Neumann (1956): This report by the pioneering computer scientist John von Neumann explored the use of redundancy techniques, such as triple modular redundancy, to improve the reliability of computing systems.

Marina & Boatyard Electrical Safety

August 20, 2024
mike@standardsmichigan.com

No Comments

Rowing at the 2024 Summer Olympics

“The Biglin Brothers Racing| Thomas Eakins (1872)

Rowing competition in the 2024 Olympics inspires a  revisit of NFPA 303: Fire Protection Standard for Marinas and Boatyards.  Apart from athletic competition, many colleges, universities and trade schools with academic programs are responsible for safety of facilities located on fresh and saltwater shorelines.  Other nations refer to best practice discovered and applied in the United States.   Keep in mind that, unlike other nations, the standard of care for electrical safety in the United States is driven primarily by the fire safety community.   This happens because public safety leadership falls upon the local Fire Marshall who has a budget that is widely understand and generally supported.

From the NFPA 303 scope statement:

 This standard applies to the construction and operation of marinas, boatyards, yacht clubs, boat condominiums, docking facilities associated with residential condominiums, multiple-docking facilities at multiple-family residences, and all associated piers, docks, and floats.

This standard also applies to support facilities and structures used for construction, repair, storage, hauling and launching, or fueling of vessels if fire on a pier would pose an immediate threat to these facilities, or if a fire at a referenced facility would pose an immediate threat to a docking facility.

This standard applies to marinas and facilities servicing small recreational and commercial craft, yachts, and other craft of not more than 300 gross tons.

This standard is not intended to apply to a private, noncommercial docking facility constructed or occupied for the use of the owners or residents of the associated single-family dwelling.

No requirement in this standard is to be construed as reducing applicable building, fire, and electrical codes.

The standard of care for facilities owned by educational institutions is not appreciably different from the standard of care for any other Owner except some consideration should be given to the age and training of most of the occupants — students, of course — who are a generally transient population.  Some research projects undertaken on university-owned facilities are also subject to the local adaptions of NFPA 303.  The current version of NFPA 303 is linked below:

FREE ACCESS: NFPA 303

 

Boathouse Row / Philadelphia

The 2021 Edition is the current edition and the next edition will be the 2025 revision.  Click on the link below to read what new ideas were running through the current edition; mostly electrical that are intended to correlate with National Electrical Code Article 555 and recent electrical safety research*:

NFPA 303 Public Input Report for the 2021 Edition

Public input closing date for the 2025 Edition is June 1, 2023.   

You may submit comment directly to NFPA on this and/or any other NFPA consensus product by CLICKING HERE.  You will need to set up a (free) account.   NFPA 303 document is also on the standing agenda of our 4 times monthly collaboration with the IEEE Education & Healthcare Facilities Committee.  See our CALENDAR for the next online colloquium; open to everyone.

Michigan Technological University

Issue: [16-133]

Category: Electrical, #SmartCampus, Facility Asset Management

Colleagues: Mike Anthony,  Jim Harvey


LEARN MORE:

* Marina Risk Reduction

NFPA 70 National Electrical Code (Article 555)

Examining the Risk of Electric Shock Drowning (ESD) As a Function of Water Conductivity

August 14, 2003

August 20, 2024
mike@standardsmichigan.com
, , , , ,
No Comments

“The world is changed by examples, not by opinions.”

Marc Andreesen (Founder of Netscape, the first dominant web browser)

 

August 14, 2003 Power Outage at the University of Michigan

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content