“Vue de toits (effet de neige)” 1878 Gustave Caillebotte
One of the core documents for heat tracing is entering a new 5-year revision cycle; a consensus standard that is especially relevant this time of year because of the personal danger and property damage that is possible in the winter months. Education communities depend upon heat tracing for several reasons; just a few of them listed below:
Ice damming in roof gutters that can cause failure of roof and gutter structural support
Piping systems for sprinkler systems and emergency power generation equipment
This standard provides requirements for the testing, design,installation, and maintenance of electrical resistance trace heating in general industries as applied to pipelines, vessels, pre-traced and thermally insulated instrument tubing and piping, and mechanical equipment. The electrical resistance trace heating is in the form of series trace heaters, parallel trace heaters, and surface heating devices. The requirements also include test criteria to determine the suitability of these heating devices utilized in unclassified (ordinary) locations.
Its principles can, and should be applied with respect to other related documents:
We are happy to explain the use of this document in design guidelines and/or construction specifications during any of our daily colloquia. We generally find more authoritative voices in collaborations with the IEEE Education & Healthcare Facilities Committee which meets 4 times per month in Europe and in the Americas. We maintain this title on the standing agenda of our Snow & Ice colloquia. See our CALENDER for the next online meeting.
Much of our assertion that building construction in education communities resembles a perpetual motion machine rests upon innovation in a broad span of technologies that is effectively weather resistant; that along with development of construction scheduling. Today at 16:0 UTC we review the technical, management and legal literature that supports safe and sustainable construction,
1. Cold-Weather Concrete Technology
Accelerating Admixtures: These are chemical additives that speed up the curing process of concrete, allowing it to set even in low temperatures.
Heated Concrete Blankets: Electric blankets that maintain a consistent temperature around freshly poured concrete.
Hot Water Mixing: Using heated water during the mixing process to ensure that concrete maintains the proper temperature for curing.
Air-Entrained Concrete: Helps resist freeze-thaw cycles by creating tiny air pockets in the concrete.
2. Temporary Heating Solutions
Portable Heaters: Diesel, propane, or electric heaters used to maintain a warm environment for workers and materials.
Enclosed Workspaces: Temporary enclosures (tents or tarps) around construction areas retain heat and shield against snow and wind.
3. Advanced Building Materials
Cold-Weather Asphalt: Modified asphalt that can be laid at lower temperatures.
Pre-fabricated Components: Factory-assembled parts (walls, beams) that reduce on-site work in harsh conditions.
4. Insulation Techniques
Insulated Tarps and Blankets: Used to cover construction materials and newly laid concrete to prevent freezing.
Frost-Protected Shallow Foundations: Insulation techniques to keep ground temperatures stable and prevent frost heave.
5. Ground Thawing Technologies
Hydronic Ground Heaters: Circulate heated fluid through hoses laid on frozen ground to thaw it before excavation or foundation work.
Steam Thawing: Direct steam application to melt snow or thaw frozen soil.
6. Lighting Solutions
High-Intensity LED Lights: Compensate for reduced daylight hours to ensure safe and efficient work conditions.
7. Weather-Resistant Machinery
Winterized Equipment: Construction equipment with heated cabins, antifreeze systems, and enhanced traction for icy conditions.
8. Workforce Adaptations
Cold-Weather Gear: Heated clothing, gloves, and footwear keep workers safe and productive.
Modified Work Schedules: Shorter shifts or daytime-only work to limit exposure to extreme cold.
9. Snow and Ice Management
Deicing Solutions: Chemical deicers and mechanical snow-removal equipment keep work areas safe and accessible.
Heated Surfaces: Embedded heating systems in ramps or entryways prevent ice buildup.
The Occupational Safety and Health Administration does not have a specific regulation solely dedicated to building construction in cold winter weather. However, several OSHA standards and guidelines are applicable to address the hazards and challenges of winter construction work. These regulations focus on worker safety, protection from cold stress, proper equipment use, and general site safety. Key applicable OSHA regulations and guidance include:
1. Cold Stress and Temperature Exposure
General Duty Clause (Section 5(a)(1)): Employers are required to provide a workplace free from recognized hazards likely to cause death or serious physical harm. This includes addressing cold stress hazards, such as hypothermia, frostbite, and trench foot.
OSHA Cold Stress Guide: OSHA provides guidance on recognizing, preventing, and managing cold stress but does not have a specific cold stress standard.
2. PPE (Personal Protective Equipment)
29 CFR 1926.28: Requires employers to ensure the use of appropriate personal protective equipment.
29 CFR 1910.132: General requirements for PPE, including insulated gloves, boots, and clothing to protect against cold weather.
3. Walking and Working Surfaces
29 CFR 1926.501: Fall Protection in Construction. Ice and snow can increase fall risks, so proper precautions, including removal of hazards and use of fall protection systems, are required.
29 CFR 1926.451: Scaffolding. Specific safety measures must be implemented to ensure stability and secure footing in icy conditions.
4. Snow and Ice Removal
Hazard Communication Standard (29 CFR 1910.1200): Ensures workers are informed about hazards related to de-icing chemicals or other substances used in winter construction.
5. Powered Equipment
29 CFR 1926.600: Equipment use, requiring machinery to be properly maintained and adjusted for cold-weather operations, including anti-freeze measures and winterization.
6. Excavations and Frost Heave
29 CFR 1926.651 and 1926.652: Excavation standards. Frozen ground and frost heave pose additional risks during trenching and excavation activities.
7. Temporary Heating
29 CFR 1926.154: Requirements for temporary heating devices, including ventilation and safe usage in confined or enclosed spaces.
8. Illumination
29 CFR 1926.56: Lighting standards to ensure sufficient visibility during reduced daylight hours in winter.
9. Emergency Preparedness
First Aid (29 CFR 1926.50): Employers must ensure quick access to first aid, especially critical for treating cold-related illnesses or injuries.
10. Hazard Communication and Training
29 CFR 1926.21(b): Employers must train employees on recognizing winter hazards, such as slips, trips, falls, and cold stress.
By following these OSHA standards and implementing additional best practices (e.g., scheduling breaks in heated shelters, providing warm beverages, and encouraging layered clothing), employers can ensure a safer construction environment during winter conditions.
An American hot sandwich originally created at the Brown Hotel in Louisville, Kentucky, by Fred K. Schmidt in 1926. It is a variation of traditional Welsh rarebit and was one of two signature sandwiches created by chefs at the Brown Hotel shortly after its founding in 1923. It was created to serve as an alternative to ham and egg late-night dinners requested by its guests in the early hours of the morning after an evening of dancing; its ballroom accommodating upwards 1200 guests.
This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.
Dr. Gisela Olias, Presse- und Öffentlichkeitsarbeit, TUM
In some Christian traditions, especially among Catholics who observe dietary restrictions during Lent, chicory root has been used as a caffeine-free substitute for coffee. It’s commonly consumed in Louisiana and parts of Europe.
The term “Muckefuck” (pronounced “Mook-eh-fook”) is a traditional German word for coffee substitutes, particularly those made from roasted chicory root, barley, or other grains. No joke! “Muckefuck” is a real historical term in Germany, and while it may sound funny to English speakers, it has nothing to do with profanity.
The word likely comes from a mix of French and German dialects. One theory is that it originates from the French phrase “mocca faux”, meaning “fake coffee” (literally, “false mocha”).
Over time, German pronunciation altered it into “Muckefuck”, referring to coffee substitutes made from chicory, barley, or other roasted grains.
It was commonly used in Prussia, Bavaria, and other German-speaking areas, especially during times of war or economic hardship when real coffee was unavailable.
While the word may raise eyebrows for English speakers, it’s completely innocent in German! If you prefer, you can simply ask for “Chicorée Kaffee” or “Malzkaffee” in Munich to avoid any awkward moments.
“We worry about what a child will become tomorrow,
yet we forget that he is someone today.”
– Stacia Tauscher
Today we run a status check on the stream of technical and management standards evolving to assure the highest possible level of security in education communities. The literature expands significantly from an assortment of national standards-setting bodies, trade associations, ad hoc consortia and open source standards developers. CLICK HERE for a sample of our work in this domain.
School security is big business in the United States. According to a report by Markets and Markets, the global school and campus security market size was valued at USD 14.0 billion in 2019 and is projected to reach USD 21.7 billion by 2025, at a combined annual growth rate of 7.2% during the forecast period.
Another report by Research And Markets estimates that the US school security market will grow at a compound annual growth rate of around 8% between 2020 and 2025, driven by factors such as increasing incidents of school violence, rising demand for access control and surveillance systems, and increasing government funding for school safety initiatives.
Because the pace of the combined annual growth rate of the school and campus security market is greater than the growth rate of the education “industry” itself, we’ve necessarily had to break down our approach to this topic into modules:
Security 100. A survey of all the technical and management codes and standards for all educational settings — day care, K-12, higher education and university affiliated healthcare occupancies.
Security 200. Queries into the most recent public consultations on the components and interoperability* of supporting technologies
Video surveillance: indoor and outdoor cameras, cameras with night vision and motion detection capabilities and cameras that can be integrated with other security systems for enhanced monitoring and control.
Access control:doors, remote locking, privacy and considerations for persons with disabilities.
Panic alarms: These devices allow staff and students to quickly and discreetly alert authorities in case of an emergency.
Metal detectors: These devices scan for weapons and other prohibited items as people enter the school.
Mass notification systems: These systems allow school administrators to quickly send emergency alerts and notifications to students, staff, and parents.
Intrusion detection systems: These systems use sensors to detect unauthorized entry and trigger an alarm.
GPS tracking systems: These systems allow school officials to monitor the location of school buses and track the movements of students during field trips and other off-campus activities.
Security 300. Regulatory and management codes and standards; a great deal of which are self-referencing.
As always, we reckon first cost and long-term maintenance cost, including software maintenance for the information and communication technologies (i.e. anything with wires) installed in the United States. Cybersecurity is outside our wheelhouse and beyond our expertise. In order to do any of the foregoing reasonably well, we have to leave cybersecurity standards to others.
Bob Hope Primary School Kadena Air Base
When your students love the school security guard- he gets flowers! Thanks, Steve! You are the BEST and we appreciate your hard work keeping us safe and building relationships! pic.twitter.com/VCJQ6y9S44
Education Community Safety catalog is one of the fast-growing catalogs of best practice literature. In developing district security plans, K-12 school leaders stress that school safety is a cross-functional responsibility and every individual’s participation drives the success of overall safety protocols. We link a small sample below and update ahead of every Security colloquium.
* Interoperability refers to the ability of different technologies or systems to communicate and work together seamlessly. In the context of school security technologies, interoperability can help improve the effectiveness of security systems and make it easier for school personnel to manage and respond to potential security threats. Here’s what we look for:
Standardization: By standardizing communication protocols and data formats, school security technologies can be made more compatible with each other, making it easier for different systems to communicate and share information.
Integration: School security technologies can be integrated with each other to provide a more comprehensive security solution. For example, access control systems can be integrated with video surveillance systems to automatically trigger alerts when an unauthorized person enters a restricted area.
Open Architecture: Open architecture solutions enable different security systems to be connected and communicate with each other regardless of their manufacturer or supplier. This approach makes it easier to integrate different technologies and avoid vendor lock-in.
Cloud-based Solutions: Cloud-based security solutions can enable interoperability by providing a centralized platform for managing and monitoring different security systems. This approach can also simplify the deployment of security technologies across multiple locations.
Collaboration: School security technology providers can work together to develop interoperability standards and best practices that can be adopted across the industry. Collaboration can help drive innovation and improve the effectiveness of security systems.
Kelechi M. Ikegwu – Evelyn Sowells – Howard Hardiman
Department of Computer Systems Technology, North Carolina A&T State University
ABSTRACT. The horrific and tragic deaths that have resulted from infamous school shootings have deprived Americans of the sense of security in what has traditionally been a nurturing and safe environment. This paper will discuss different preventive methods for school shootings. The most current preventive methods are examined for fitness based on a variety of school shootings that have occurred in the past. Then a framework for a new school shooting protection device is proposed and evaluated. Concepts from computer vision, anomaly detection, and electromagnetic propulsion are discussed with respect to the proposed framework. Ideally, the goal of the framework presented in this paper is to prevent deaths and injuries from occurring during a school shooting. With the framework, an efficient and comparatively affordable preventive method could be released in the near future.
The federal requirement for a school safety plan is outlined in the Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act, commonly known as the Clery Act. The Clery Act requires all colleges and universities that participate in federal student financial aid programs to develop and publish an annual security report that includes certain safety-related policies, procedures, and crime statistics.
The Clery Act requires that schools include specific information in their security reports, including:
The school’s crime statistics for the previous three years.
Information about the school’s policies and procedures related to campus safety and security.
Information about crime prevention programs and services offered by the school.
Information about the school’s emergency response and evacuation procedures.
Information about the school’s policies and procedures for addressing and reporting incidents of sexual assault, domestic violence, dating violence, and stalking.
Information about the school’s drug and alcohol policies and prevention programs.
While the Clery Act only applies to colleges and universities that receive federal student financial aid, many states and school districts have adopted similar requirements for K-12 schools to develop and implement comprehensive safety plans. These plans may include many of the same elements as Clery Act-compliant security reports, such as emergency response protocols, crime prevention programs, and policies for addressing incidents of violence and harassment.
The most recent changes to the Clery Act were made in March 2020, when the Department of Education published the final rule amending the Clery Act regulations. The changes include:
Expanding the definition of sexual harassment to include quid pro quo and hostile environment harassment, which aligns with Title IX regulations.
Requiring institutions to report stalking and domestic violence in addition to existing crime categories.
Adding hazing as a reportable crime category.
Requiring institutions to compile and publish hate crime statistics for all categories of prejudice, including gender identity and national origin.
Requiring institutions to include specific policies and procedures in their annual security reports, such as those related to prevention and response to sexual assault, domestic violence, dating violence, and stalking.
Requiring institutions to provide survivor-centered and trauma-informed services to individuals who report or experience sexual assault, domestic violence, dating violence, or stalking.
Requiring institutions to include information about prevention and response to cyberbullying and electronic harassment in their annual security reports.
Allowing institutions to provide annual security reports electronically and requiring institutions to make their crime statistics publicly available on their website.
These changes aim to strengthen the Clery Act’s requirements for campus safety and to better address sexual harassment and other forms of violence on college and university campuses.
Every new federal law involving paperwork creates an uncountable number of trade associations and compliance enterprises. A simple web search on “Cleary Act” will reveal half the internet full of pages for more information. Our focus is on the user-side — i.e. making inquiries and pushing back on the gaudy proliferation of regulatory requirements, the integrity of purpose of the law notwithstanding. We maintain this title on the standing agenda on all of our Security colloquia. See our CALENDAR for the next online meeting; open to everyone.
The Builders Hardware Manufacturers Association (BHMA) is an ANSI accredited standards developing organization for building access and egress technology that education industry real asset managers find referenced deep in the architectural and electrical sections of construction contract specifications (as in “Conform to all applicable standards”). Architects, electrical, fire protection and information and communications technology professionals usually have to collaborate on the design, construction. operations and maintenance of fenestration technologies.
Gone are the days when a door was just a door (or “opening” or “fenestration”). Doors are now portals; an easily identifiable control point in the Internet of Things electrotechnical transformation. There are 100’s of thousands of them on large research university campus; for example. As we explain in our School Security Standards post the pace of standardization in public safety management and technology has increased; driven by events. Some of the risk management can be accomplished with integrated technical solutions that are complex and more expensive to design, build, operate and maintain.
A fair estimate of the annualized cost of a door now runs on the order of $1000 to $10,000 per door (with hospital doors at the high end).
Loreto Secondary School | Kilkenny, Ireland
BHMA develops and maintains performance standards for locks, closers, exit devices and other builders hardware. It has more than 40 ANSI/BHMA standards. The widely known ANSI/BHMA A156 series of standards describes and establishes features and criteria for an array of builders hardware products including locks, closers, exit devices, butts, hinges, power-operated doors and access control products. They are listed on the link below:
BHMA has opened one of its standards for public review that is relevant to our contribution to the security and sustainability agenda of the education facility industry; an agenda that necessarily involves a growing constellation of interacting specifics
BHMA A156.4 Standard for Door Controls – Closers. This Standard contains requirements for door closers surface mounted, concealed in the door, overhead concealed, and concealed in the floor. Also included are pivots for floor closers. Criteria for conformance include cycle, operational, closing force, and finish tests.
Given that BHMA consensus products are largely product standards (much the same way UL Standards are product standards) it is wise to keep an eye on a related installation standards found in the fenestration sections of model building and fire safety codes and in ASTM E2112 Standard Practice for Installation of Exterior Windows, Doors and Skylights.
Comments are due May 6th. You may obtain an electronic copies of any of the foregoing from [email protected] and send comments to the same (with copy to [email protected]).
Roxbury Community College | Roxbury Crossing, Massachusetts
The BHMA suite is on the standing agenda of our monthly Construction Specification and Design Guideline teleconference; an informal session that should interest building contractors and design professionals who prepare documents that use the general purpose clause: “Conform to all applicable standards”. That usually means the latest standard. See our CALENDAR for the next online meeting; open to everyone.
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwBpic.twitter.com/GkAXrHoQ9T