Babcock Neighborhood School

Loading
loading...

American Planning Association

January 8, 2026
mike@standardsmichigan.com
No Comments
Though founded in 1978, the APA does not publish dedicated standards or guidelines specifically for college/university campus planning. It is a membership-based non-profit organization with revenue coming from “program services” — membership, conferences and certification services. Today we review its participation in the expanding discussion about homeschooling and new neighborhood planning.
§

§

Campus physical planning is more commonly addressed by organizations like the Society for College and University Planning (SCUP), and scholarly literature (e.g., in the Journal of the American Planning Association) notes limited APA focus on higher education facilities compared to K-12 schools.

International Building Code Development Schedule

I-Code Group B Committee Action Hearings

Smart Cities: Wicked Problems

Related:

The New Urban Order: Is the Rise of Homeschooling a Problem?

Integrated Planning Glossary

January 8, 2026
mike@standardsmichigan.com

No Comments
§

Attendees of the SCUP 2025 North Atlantic Symposium sit on the Commons in Columbia Business School and smile.

The Society of College and University Planning was founded in 1965 at the University of Michigan in Ann Arbor during an informal gathering of campus planners frustrated with the lack of professional exchange in their emerging field. Rapid postwar enrollment growth and massive campus expansion projects had created urgent needs for long-range physical planning, yet few institutions had dedicated planners or shared knowledge.
A small group, led by University of Michigan planners George J. Bruha and Frederick W Mayer met in Ann Arbor to discuss common challenges facing other State of Michigan settlements; joined by Stanford, Ohio State and the University of Illinois. They decided to create a formal organization to foster collaboration, research, and professional development. In 1966, with Michigan’s support, SCUP was officially established as a nonprofit with its first office on the Ann Arbor campus. Its founding principle—integrated planning linking academics, finances, and facilities—remains central today.

Integrated Planning Glossary


Early operations benefited from administrative support (aegis) provided by the University of Michigan, including office space and resources in Ann Arbor. This arrangement persisted until a financial crisis in the late 1970s (1976–1980), during which SCUP relocated to New York.

The decoupling—marking full operational and administrative independence from the University of Michigan—occurred in 1980, when SCUP returned to Ann Arbor as a self-sustaining nonprofit headquartered at a separate location –1330 Eisenhower Place — less than a mile walk from Standards Michigan‘s front door at 455 East Eisenhower.

* Of the 220 ANSI Accredited Standards Developers, the State of Michigan ranks 3rd in the ranking of U.S. states with the most ANSI-accredited standards developers (ASDs) headquartered there; behind the Regulatory Hegemons of California and ChicagoLand and excluding the expected cluster foxtrot of non-profits domiciled in the Washington-New York Deep State Megalopolis.  Much of Michigan’s presence in the private consensus standards space originates from its industrial ascendency through most of the 1900’s.

Occupancy Classification Logic

January 8, 2026
mike@standardsmichigan.com
No Comments

Section 305: Educational Group E (2024 IBC)

Group E occupancy covers buildings (or portions thereof) used for educational purposes by six or more persons at any time through the 12th grade.

This includes:

  • Elementary schools — Kindergartens through high schools (primary classification for academic instruction).
  • Day care facilities — Specifically for more than five children older than 2½ years of age receiving educational, supervision, or personal care services for fewer than 24 hours per day.

Key exceptions and notes:

  • Facilities with five or fewer children (any age) in day care → classify as part of the primary occupancy or as Group R-3 (if in a dwelling unit).
  • Day care during religious functions in places of worship → classifies as part of the primary occupancy (often Group A-3).
  • Accessory religious educational rooms or auditoriums with occupant loads <100 → classify as Group A-3.

Colleges and universities do not fall under Group E; higher education facilities typically classify as Group B (Business) for classrooms, offices, and labs, with assembly spaces (e.g., lecture halls, auditoriums) as Group A if they meet assembly criteria.

Section 308: Institutional Group I (Relevant to Day Care – Group I-4)

Section 308 defines Institutional Group I occupancies overall, with Group I-4 specifically addressing day care facilities requiring custodial care.

Group I-4 includes buildings occupied by more than five persons of any age who receive custodial care (supervision and assistance due to age or incapacity) for fewer than 24 hours per day, provided by non-relatives outside the home.

This explicitly covers:

  • Adult day care.
  • Child day care (particularly when occupants need assistance in emergencies).

For child day care:

  • Facilities serving more than five children 2½ years of age or younger → generally Group I-4.
  • Exception allowing reclassification to Group E: If serving more than five but no more than 100 children ≤2½ years old, care rooms are on the level of exit discharge, and each care room has a direct exterior exit door.

Other notes:

  • Five or fewer persons receiving custodial care → classifies as part of the primary occupancy or Group R-3 (if in a dwelling unit).
  • Care during religious functions → classifies as part of the primary occupancy.

Elementary schools and colleges do not fall under Section 308; elementary schools are Group E (as above), and colleges are typically Group B.

These classifications in the 2024 IBC remain consistent with prior editions (e.g., 2021). Local amendments may apply, so verify with the authority having jurisdiction. For the exact text, consult the official ICC digital codes.

Electric Service Metering & Billing

January 8, 2026
mike@standardsmichigan.com

No Comments

Electrical Safety

Today at 16:00 UTC we review best practice for engineering and installing the point of common coupling between an electrical service provider its and an purchasing — under the purview of NEC CMP-10.

Committee topical purviews change cycle-to-cycle.  Here’s the transcript for today’s session:  CMP-10 Second Draft Report (368 pages)

Use the login credentials at the upper right of our home page.

The relevant passages of the National Electrical Code are found in Article 230 and Article 495.  We calibrate our attention with the documents linked below.  These are only representative guidelines:

University of Michigan Medium Voltage Electrical Distribution

Texas A&M University Medium Voltage Power Systems

University of Florida Medium Voltage Electrical Distribution

Representative standards for regulated utilities for purchased power:

Detroit Edison Primary Service Standards (Green Book)

American Electric Power: Requirements for Electrical Services

Pacific Gas & Electric Primary Service Requirements

The IEEE Education & Healthcare Facilities Committee curates a library of documents similar to those linked above.

Design of Electrical Services for Buildings

We are in the process of preparing new (original, and sometimes recycled) proposals for the 2026 National Electrical Code, with the work of Code Panel 10 of particular relevance to today’s topic:

2026 National Electrical Code Workspace

First Draft Meetings: January 15-26, 2024 in Charleston, South Carolina


Electrical meter billing standards are generally regulated at the state or local level, with guidelines provided by public utility commissions or similar regulatory bodies.  These tariff sheets are among the oldest in the world.  There are some common standards for billing and metering practices, including:

  1. Meter Types: There are various types of meters used to measure electricity consumption, including analog (mechanical) meters, digital meters, and smart meters. Smart meters are becoming more common and allow for more accurate and real-time billing.
  2. Billing Methodology:
    • Residential Rates: Most residential customers are billed based on kilowatt-hours (kWh) of electricity used, which is the standard unit of energy.
    • Demand Charges: Some commercial and industrial customers are also subject to demand charges, which are based on the peak demand (the highest amount of power drawn at any one point during the billing period).
    • Time-of-Use Rates: Some utilities offer time-of-use (TOU) pricing, where electricity costs vary depending on the time of day or season. For example, electricity may be cheaper during off-peak hours and more expensive during peak hours.
  3. Meter Reading and Billing Cycle:
    • Monthly Billing: Typically, customers receive a bill once a month, based on the reading of the electricity meter.
    • Estimation: If a meter reading is not available, some utilities may estimate usage based on historical patterns or average usage.
    • Smart Meter Readings: With smart meters, some utilities can provide daily or even hourly usage data, leading to more precise billing.
  4. Meter Standards: The standards for electrical meters, including their accuracy and certification, are set by national organizations like the National Institute of Standards and Technology (NIST) and the American National Standards Institute (ANSI). Meters must meet these standards to ensure they are accurate and reliable.
  5. Utility Commission Regulations: Each state has a utility commission (such as the California Public Utilities Commission, the Texas Public Utility Commission, etc.) that regulates the rates and billing practices of electricity providers. These commissions ensure that rates are fair and that utilities follow proper procedures for meter readings, billing cycles, and customer service
  6. Large University “Utilities”.   Large colleges and universities that generate and distribute some or all of their electric power consumption have developed practices to distribute the cost of electricity supply to buildings.  We will cover comparative utility billing practices in a dedicated colloquium sometime in 2025.

Michigan Public Service Commission | Consumer’s Energy Customer Billing Rules

Du froid

January 7, 2026
mike@standardsmichigan.com
, , , ,
No Comments

“Weather is fate”

Charles Louis de Secondat, Baron de La Brède et de Montesquieu

“Road to Versailles at Louveciennes” 1869 Camille Pissarro

Heat tracing is a process used to maintain or raise the temperature of pipes and vessels in order to prevent freezing, maintain process temperature, or ensure that products remain fluid and flow through the system properly.  Without electric heat tracing; much of the earth would be uninhabitable.

Heat tracing works by using an electric heating cable or tape that is wrapped around the pipe or vessel, and then insulated to help retain the heat. The heating cable is connected to a power source and temperature control system that maintains the desired temperature by regulating the amount of heat output from the cable. Heat tracing is commonly used in industrial applications where temperature control is critical, such as in chemical plants, refineries, and oil and gas facilities.

There are several types of heat tracing, including electric heat tracing, steam tracing, and hot water tracing, each of which have their own unique advantages and disadvantages. The selection of the appropriate type of heat tracing depends on the specific application and the required temperature range, as well as factors such as cost, maintenance, and safety considerations.

Heat Tracing for Piping SpecificationNECA Standards (N.B. Link unstable)

2026 NEC CMP-17 Public Input Report | 2026 NEC CMP-17 Second Draft Report

Northern Michigan University | Marquette County

Today we review the literature for snow and ice management (and enjoyment) produced by these standards-setting organizations:

Accredited Snow Contractors Association

American Society of Civil Engineers

American Society of Mechanical Engineers

ASTM International

FM Global

Destructive Deep Freeze Strikes Cold and Hot Regions Alike

Institute of Electrical & Electronic Engineers

Electrical Heat Tracing: International Harmonization — Now and in the Future

International Code Council

International Building Code: Chapter 15 Roof Assemblies and Rooftop Structures

National Electrical Contractors Association

National Fire Protection Association

Winter is Coming: Is Your Facility Protected? (Holly Burgess, November 2022)

National Electrical Code: Articles 426-427

National Floor Safety Institute

Snow and Ice Management Association

Underwriters Laboratories

Manufacturers:

Chromalox Electrical Heat Tracing Systems Design Guide



It is a surprisingly large domain with market-makers in every dimension of safety and sustainability; all of whom are bound by state and federal regulations.

Join us at 16:00 UTC with the login credentials at the upper right of our home page.


There have been several recent innovations that have made it possible for construction activity to continue through cold winter months. Some of the most notable ones include:

  1. Heated Job Site Trailers: These trailers are equipped with heating systems that keep workers warm and comfortable while they take breaks or work on plans. This helps to keep morale up and prevent cold-related health issues.
  2. Insulated Concrete Forms (ICFs): ICFs are prefabricated blocks made of foam insulation that are stacked together to form the walls of a building. The foam insulation provides an extra layer of insulation to keep the building warm during cold winter months.
  3. Warm-Mix Asphalt (WMA): WMA is a type of asphalt that is designed to be used in colder temperatures than traditional hot-mix asphalt. This allows road construction crews to work through the winter months without having to worry about the asphalt cooling and becoming unusable.
  4. Pneumatic Heaters: These heaters are used to warm up the ground before concrete is poured. This helps to prevent the concrete from freezing and becoming damaged during the winter months.
  5. Electrically Heated Mats: These mats are placed on the ground to prevent snow and ice from accumulating. This helps to make the job site safer and easier to work on during the winter months.

Overall, these innovations have made it possible for construction crews to work through the winter months more comfortably and safely, which has helped to keep projects on schedule and minimize delays.

Somewhat related:

Building Construction in Cold Weather

January 7, 2026
mike@standardsmichigan.com
No Comments

AI Generated | See our LIVE construction cameras

Much of our assertion that building construction in education communities resembles a perpetual motion machine rests upon innovation in a broad span of technologies that is effectively weather resistant; that along with development of construction scheduling. Today at 16:0 UTC we review the technical, management and legal literature that supports safe and sustainable construction,

1. Cold-Weather Concrete Technology

    • Accelerating Admixtures: These are chemical additives that speed up the curing process of concrete, allowing it to set even in low temperatures.
    • Heated Concrete Blankets: Electric blankets that maintain a consistent temperature around freshly poured concrete.
    • Hot Water Mixing: Using heated water during the mixing process to ensure that concrete maintains the proper temperature for curing.
    • Air-Entrained Concrete: Helps resist freeze-thaw cycles by creating tiny air pockets in the concrete.

2. Temporary Heating Solutions

    • Portable Heaters: Diesel, propane, or electric heaters used to maintain a warm environment for workers and materials.
    • Enclosed Workspaces: Temporary enclosures (tents or tarps) around construction areas retain heat and shield against snow and wind.

3. Advanced Building Materials

    • Cold-Weather Asphalt: Modified asphalt that can be laid at lower temperatures.
    • Pre-fabricated Components: Factory-assembled parts (walls, beams) that reduce on-site work in harsh conditions.

4. Insulation Techniques

    • Insulated Tarps and Blankets: Used to cover construction materials and newly laid concrete to prevent freezing.
    • Frost-Protected Shallow Foundations: Insulation techniques to keep ground temperatures stable and prevent frost heave.

5. Ground Thawing Technologies

    • Hydronic Ground Heaters: Circulate heated fluid through hoses laid on frozen ground to thaw it before excavation or foundation work.
    • Steam Thawing: Direct steam application to melt snow or thaw frozen soil.

6. Lighting Solutions

    • High-Intensity LED Lights: Compensate for reduced daylight hours to ensure safe and efficient work conditions.

7. Weather-Resistant Machinery

    • Winterized Equipment: Construction equipment with heated cabins, antifreeze systems, and enhanced traction for icy conditions.

8. Workforce Adaptations

    • Cold-Weather Gear: Heated clothing, gloves, and footwear keep workers safe and productive.
    • Modified Work Schedules: Shorter shifts or daytime-only work to limit exposure to extreme cold.

9. Snow and Ice Management

    • Deicing Solutions: Chemical deicers and mechanical snow-removal equipment keep work areas safe and accessible.
    • Heated Surfaces: Embedded heating systems in ramps or entryways prevent ice buildup.

The Occupational Safety and Health Administration does not have a specific regulation solely dedicated to building construction in cold winter weather. However, several OSHA standards and guidelines are applicable to address the hazards and challenges of winter construction work. These regulations focus on worker safety, protection from cold stress, proper equipment use, and general site safety. Key applicable OSHA regulations and guidance include:

1. Cold Stress and Temperature Exposure

  • General Duty Clause (Section 5(a)(1)): Employers are required to provide a workplace free from recognized hazards likely to cause death or serious physical harm. This includes addressing cold stress hazards, such as hypothermia, frostbite, and trench foot.
  • OSHA Cold Stress Guide: OSHA provides guidance on recognizing, preventing, and managing cold stress but does not have a specific cold stress standard.

2. PPE (Personal Protective Equipment)

  • 29 CFR 1926.28: Requires employers to ensure the use of appropriate personal protective equipment.
  • 29 CFR 1910.132: General requirements for PPE, including insulated gloves, boots, and clothing to protect against cold weather.

3. Walking and Working Surfaces

  • 29 CFR 1926.501: Fall Protection in Construction. Ice and snow can increase fall risks, so proper precautions, including removal of hazards and use of fall protection systems, are required.
  • 29 CFR 1926.451: Scaffolding. Specific safety measures must be implemented to ensure stability and secure footing in icy conditions.

4. Snow and Ice Removal

  • Hazard Communication Standard (29 CFR 1910.1200): Ensures workers are informed about hazards related to de-icing chemicals or other substances used in winter construction.

5. Powered Equipment

  • 29 CFR 1926.600: Equipment use, requiring machinery to be properly maintained and adjusted for cold-weather operations, including anti-freeze measures and winterization.

6. Excavations and Frost Heave

  • 29 CFR 1926.651 and 1926.652: Excavation standards. Frozen ground and frost heave pose additional risks during trenching and excavation activities.

7. Temporary Heating

  • 29 CFR 1926.154: Requirements for temporary heating devices, including ventilation and safe usage in confined or enclosed spaces.

8. Illumination

  • 29 CFR 1926.56: Lighting standards to ensure sufficient visibility during reduced daylight hours in winter.

9. Emergency Preparedness

  • First Aid (29 CFR 1926.50): Employers must ensure quick access to first aid, especially critical for treating cold-related illnesses or injuries.

10. Hazard Communication and Training

  • 29 CFR 1926.21(b): Employers must train employees on recognizing winter hazards, such as slips, trips, falls, and cold stress.

By following these OSHA standards and implementing additional best practices (e.g., scheduling breaks in heated shelters, providing warm beverages, and encouraging layered clothing), employers can ensure a safer construction environment during winter conditions.


Related:

Snow Load

Electrical heat tracing: international harmonization-now and in the future

Heat Tracing Installation

Pipe Heating

Snow & Ice Management

Incredible snow removal

January 7, 2026
mike@standardsmichigan.com
, , ,
No Comments

Electrical heat tracing: international harmonization-now and in the future

January 7, 2026
mike@standardsmichigan.com
, , , , , , , ,
No Comments

 

Electrical heat tracing: international harmonization-now and in the future

C. Sandberg

Tyco Thermal Controls

N.R. Rafferty – M. Kleinehanding – J.J. Hernandez

E.I. DuPont de Nemours & Company, Inc 

 

Abstract:  In the past, electrical heat tracing has been thought of as a minor addition to plant utilities. Today, it is recognized as a critical subsystem to be monitored and controlled. A marriage between process, mechanical, and electrical engineers must take place to ensure that optimum economic results are produced. The Internet, expert systems, and falling costs of instrumentation will all contribute to more reliable control systems and improved monitoring systems. There is a harmonization between Europe and North America that should facilitate design and installation using common components. The future holds many opportunities to optimize the design.

CLICK HERE to order complete paper

 


Heat Tracing Installation

Industrial electroheating and electromagnetic processing

Pipe Heating

Heat Tracing

Snow Load Calculator

January 7, 2026
mike@standardsmichigan.com
No Comments

“Among famous traitors of history one might mention the weather.”

Ilka Chase, The Varied Airs of Spring

 

Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-22)

ASCE Hazard Tool

Quick & Dirty Snow Load Calculator

Call for public proposals for the 2028 edition

Structural Design

 

 

Provision of Slip Resistance on Walking/Working Surfaces

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content