Agriculture

Loading
loading...

Agriculture

September 27, 2024
[email protected]
, , , ,
No Comments

“Harvest Rest” | George Cole

One characteristic of the “customer experience” of school children, dormitory residents, patients in university-affiliated hospitals and attendees of large athletic events is the quality of food.  School districts and large research universities are responsible for hundreds of food service enterprises for communities that are sensitive to various points along the food supply chain.

The American Society of Agricultural and Biological Engineers (ASABE) is one of the first names in standards setting for the technology and management of the major components of the global food supply chain.   It has organized its ANSI-accredited standards setting enterprise into about 200 technical committees developing 260-odd consensus documents*.   It throws off a fairly steady stream of public commenting opportunities; many of them relevant to agricultural equipment manufacturers (i.e, the Producer interest where the most money is) but enough of them relevant to consumers (i.e. the User interest where the least money is) and agricultural economics academic programs that we follow the growth of its best practice bibliography.

A few of the ASABE consensus documents that may be of interest to faculty and students in agricultural and environmental science studies are listed below:

  • Safety for Farmstead Equipment
  • Safety Color Code for Educational and Training Laboratories
  • Recommended Methods for Measurement and Testing of LED Products for Plant Growth and Development
  • Distributed Ledger Technology applications to the global food supply chain

The ASABE bibliography is dominated by product-related standards; a tendency we see in many business models of standards setting organizations because of the influence of global industrial conglomerates who can bury the cost of their participation into a sold product.  Our primary interest lies in the movement of interoperability standards — much more difficult — as discussed in our ABOUT.

The home page for the ASABEs standards setting enterprise is linked below:

ASABE Standards Development

As of this posting we find no live consultation notices for interoperability standards relevant to educational settlements.  Sometimes you can find them ‘more or less concurrently’ posted at the linked below:

ANSI Standards Action

We always encourage our colleagues to participate directly in the ASABE standards development process.  Students are especially welcomed into the ASABE Community.  Jean Walsh ([email protected]) and Scott Cederquist ([email protected]) are listed as contacts.

 

Category: Food

Colleagues: Mike Anthony, Jack Janveja, Richard Robben


More

 

Morrill Land-Grant Act

September 26, 2024
[email protected]
,
No Comments

IEEE Rural Electric Power Conference

“Harvest Rest”  1865 George Cole

“Agriculture is our wisest pursuit, because it will in the end

contribute most to real wealth, good morals, and happiness.”

— Thomas Jefferson

From the Wikipedia: Land-grant university

“…A land-grant university (also called land-grant college or land-grant institution) is an institution of higher education in the United States designated by a state to receive the benefits of the Morrill Acts of 1862 and 1890.

The Morrill Acts funded educational institutions by granting federally controlled land to the states for them to sell, to raise funds, to establish and endow “land-grant” colleges. The mission of these institutions as set forth in the 1862 Act is to focus on the teaching of practical agriculture, science, military science, and engineering (though “without excluding… classical studies”), as a response to the industrial revolution and changing social class.  This mission was in contrast to the historic practice of higher education to focus on a liberal arts curriculum. A 1994 expansion gave land grant status to several tribal colleges and universities….”

Link to the original legislation:

THIRTY-SEVENTH CONGRESS / Approved July 2, 1862

The Morrill Land-Grant Act has not undergone significant changes in its core structure within the past decade. However, there have been important developments and discussions surrounding its implementation, particularly regarding the use of land originally designated under the Act.

One key area of focus has been the ongoing management of trust lands associated with land-grant universities. Investigations have revealed that many of these lands continue to generate substantial revenue, often through activities such as fossil fuel production, mining, timber sales, and agriculture.

For instance, between 2018 and 2022, trust lands associated with land-grant universities generated over $6.7 billion in revenue. These investigations have also highlighted the historical context of how these lands were acquired, often from Indigenous nations, sparking ongoing debates about equity and restitution.


Several universities associated with the Morrill Land-Grant Act continue to generate significant revenue from fossil fuels, timber, and agricultural activities. Here are some examples:

  1. Washington State University (WSU): WSU benefits from timber sales on its trust lands, which have generated over $1.1 billion in revenue from 1889 to 2022. These lands are used for timber production, grazing, and other activities​ (Grist).
  2. University of Arizona: The university’s trust lands are involved in grazing, timber, and fossil fuel production. These lands generate revenue through leases for activities such as mining and oil extraction​ (Grist).
  3. University of Texas: The Permanent University Fund, which includes land-grant lands, generates revenue primarily through oil and gas production. The University of Texas system benefits significantly from these fossil fuel activities​ (Grist).
  4. University of Wyoming: Like other land-grant institutions, the University of Wyoming manages trust lands that produce revenue through activities like coal mining and grazing​ (Grist).

These activities raise important questions about the environmental and ethical implications of continuing to use land-grant trust lands in this manner, especially given the historical context of how these lands were acquired.


Point / Counterpoint

 

Climate Psychosis

Data Center Growth

September 25, 2024
[email protected]
No Comments

Google Data Center

The National Telecommunications and Information Administration requests comments on the challenges surrounding data center growth, resilience and security in the United States amidst a surge of computing power demand due to the development of critical and emerging technologies. This request focuses on identifying opportunities for the U.S. government to improve data centers’ market development, supply chain resilience, and data security. NTIA will rely on these comments, along with other public engagements on this topic, to draft and issue a public report capturing economic and security policy considerations and policy recommendations for fostering safe, secure, and sustainable data center growth.

Written comments must be received on or before November 4, 2024.

Federal Register Notice

We track leading practice discovery and promulgation of this technology nearly every week.  See our CALENDAR for sessions we coordinate with the IEEE Education & Healthcare Facilities Committee.

Related:

Gallery: Supercomputers & Data Centers

Data Center Wiring

Energy Standard for Data Centers

Data Center Research Laboratory

Big Data Applications in Edge-Cloud Systems

RELLIS Data and Research Center: Coming Summer 2025

Datacenter Architecture

…and so on. We will likely submit recommendations to NTIA on this topic; with drafts open during any of our daily colloquia.

International Energy Conservation Code

September 25, 2024
[email protected]
No Comments

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

2024 GROUP A PROPOSED CHANGES TO THE I-CODES

Public Comment Period on the IECC

AIA Michigan Comment on ICC Code Development Process

National Electrical Manufacturers Association

Shouldn’t energy conservation measures be determined by market forces rather than building construction regulations? 

Energy codes in the United States are adopted and enforced at the state level, and the stringency of the energy codes can vary widely from state to state.  For example, as of September 2021, four states (Alabama, Mississippi, South Carolina, and West Virginia) had not adopted statewide energy codes at all, according to the Building Codes Assistance Project. Other states may have adopted energy codes but have not updated them to the latest version, which could be less stringent than more recent versions.

We do not spend too many resources challenging the zietgeist.  Engineers, by nature, seek to do more with less but it is worth reminding our colleagues that energy conservation practices vary widely around the globe and not every nation supports what amounts to an energy police state.

“The Conquest of Energy” / José Chávez Morado / Universidad Nacional Autónoma de México

The International Energy Conservation Code is a model building code developed by the International Code Council for incorporation by reference into state and local energy conservation legislation.  Free access to the current edition is linked below:

2021 International Energy Conservation Code

Sell Sheet: Leading the Way to Energy Efficiency

2024 International Energy Conservation Code Update: Appeals Deadline Extended

Apart from product prescriptive passages IECC is a largely a performance code which draws its inspiration from other energy-related catalogs developed by United States standards developers; notably ASHRAE International.  Several accessory titles supporting the current 2021 edition which address energy efficiency on several fronts including cost, energy usage, use of natural resources and the impact of energy usage on the environment are linked below:

Related Titles

Many of the ideas in play can be tracked in the transcripts linked below:

Complete Monograph: 2022 Group B Proposed Changes

Complete Monograph: 2022 Group B Public Comment Agenda

Note the pre-occupation with products such as insulation, fenestration, power outlets and lighting — reflecting the financial support of energy activists advocating on behalf of manufacturers who tend build the cost of their advocacy in the price of their product.

A commonly overlooked energy conservation measure is reducing standby power consumption, also known as “vampire power.” Many electronic devices, such as televisions, computers, and chargers, consume energy even when they are not actively being used but are still plugged in. This standby power can account for up to 10% of a building’s energy consumption.

While our focus tends to be on the commercial facility docket, we keep an eye on the residential docket because, a)  many colleges and universities own and operate square-footage on the periphery of their campuses that is classified as residential, b) many student rental houses are obviously classified as residential and we want property owners to be able to afford reasonable energy conservation measures for the houses they rent to students.*

From previous posts we explained we summarized our priorities for the Group B cycle and the IECC in particular:

  • Education facilities as storm shelters
  • Laboratory ventilation
  • Classroom lighting
  • Expansion of lighting controls
  • Expansion of receptacle controls
  • Expansion of electrical power system design requirements above beyond National Electrical Code minimums.

We encourage our colleagues in energy enterprises in education communities to participate directly in the ICC Code Development Process.*

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

The IECC is a standing item on our periodic Energy 200, Power, Mechanical and Hello World! colloquia.  See our CALENDAR for the next online meeting; open to everyone.

University of Michigan

Issue: [Various]

Category: Architectural, Facility Asset Management, Space Planning

Colleagues: Mike Anthony, Jim Harvey, Jack Janveja, Richard Robben, Larry Spielvogel


* More:

Energy Standard for *Sites* and Buildings

September 25, 2024
[email protected]
,
No Comments

Addendum av to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings. This addendum creates more exacting provisions for envelope alterations. The new format is intended to better communicate the requirements, triggers, and allowances associated with performing an envelope alteration to promote energy efficiency within the impacted area(s).  Consultation closes October 6.

ANSI Standards Action Weekly Edition | Given ASHRAE’s revision redlines are frequently uploaded here

The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) is an ANSI-accredited continuous-maintenance standards developer (a major contributor to what we call a regulatory product development “stream”).   Continuous maintenance means that changes to its consensus products can change in as little as 30 days so it is wise to keep pace.

Among the leading titles in its catalog is ASHRAE 90.1 Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings.  Standard 90.1 has been a benchmark for commercial building energy codes in the United States and a key basis for codes and standards around the world for more than 35 years.  Free access to ASHRAE 90.1 version is available at the link below:

READ ONLY Version of 2022 ASHRAE 90.1

Redlines are released at a fairly brisk pace — with 30 to 45 day consultation periods.  A related title — ASHRAE 189.1 Standard for the Design of High Performance Green Buildings — first published in 2009 and far more prescriptive in its scope heavily  references parent title 90.1 so we usually them as a pair because 189.1 makes a market for green building conformance enterprises. Note the “extreme prescriptiveness” (our term of art) in 189.1 which has the practical effect of legislating engineering judgement, in our view.

25 January 2023: Newly Released ASHRAE 90.1-2022 Includes Expanded Scope For Building Sites

ASHRAE committees post their redlines at the link below:

Online Standards Actions & Public Review Drafts

Education estate managers, energy conservation workgroups, sustainability officers, electric shop foreman, electricians and front-line maintenance professionals who change lighting fixtures, maintain environmental air systems are encouraged to participate directly in the ASHRAE consensus standard development process.

We also maintain ASHRAE best practice titles as standing items on our Mechanical, Water, Energy and Illumination colloquia.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [Various]

Category: Mechanical, Electrical, Energy Conservation, Facility Asset Management, US Department of Energy, #SmartCampus

Colleagues: Mike Anthony, Larry Spielvogel, Richard Robben

Under Construction:  ASHRAE WORKSPACE


More

The fundamental concept in social science is Power, in the same sense in which Energy is the fundamental concept in physics. - Bertrand Russell

ANSI/ASHRAE/IES 90.1-2019: Energy Standard For Buildings

ARCHIVE 2002-2016 / ASHRAE 90.1 ENERGY STANDARD FOR BUILDINGS

US Department of Energy Building Energy Codes Program

ASHRAE Guideline 0 The Commissioning Process

Why Software is Eating the World


* Many standards-developing organizations aim to broaden their influence by entering the product standard and certification domain. Although our primary focus is on interoperability standards (within a system of interoperable products), we also consider market dynamics when product performance specifications are incorporated by reference into public law.

2028 National Electrical Safety Code

September 25, 2024
[email protected]
,
No Comments

IEEE Standards Association Public Review

Related Issues and Recent Research | Federal Legislation

“Rain in Charleston” 1951 Thomas Fransioli

This title sets the standard of care for construction, operation and maintenance of power and telecommunication infrastructure on the supply side of the point of common coupling. It is the first title to contemplate when weather disasters happen; with most public utilities bound to its best practice assertions by statute. Pre-print of Change Proposals for changes to appear in 2028 Edition will be available by 1 July 2025; with 24 March 2026 as the close date for comments on proposed changes.

Project Introduction for the 2028 Edition (2:39 minutes)

NESC 2028 Revision Schedule

Changes proposals for the Edition will be received until 15 May 2024

Proposals for the 2028 National Electrical Safety Code

Project Workspace: Update Data Tables in IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

Painting by Linda Kortesoja Klenczar

Federal Energy Regulatory Commission: Electrical Resource Adequacy

Relevant Research

NARUC Position on NFPA (NEC) and IEEE (NESC) Harmonization

The standard of care for electrical safety at high and low voltage is set by both the NEC and the NESC. There are gaps, however (or, at best “gray areas”) — the result of two technical cultures: utility power culture and building fire safety culture. There is also tradition. Local system conditions and local adaptation of regulations vary. Where there is a gap; the more rigorous requirement should govern safety of the public and workers.

The 2023 National Electrical Safety Code (NESC)– an IEEE title often mistaken for NFPA’s National Electrical Code (NEC) — was released for public use about six months ago; its normal 5-year revision cycle interrupted by the circumstances of the pandemic.   Compared with the copy cost of the NEC, the NESC is pricey, though appropriate for its target market — the electric utility industry.  Because the 2023 revision has not been effectively “field tested” almost all of the available support literature is, effectively, “sell sheets” for pay-for seminars and written by authors presenting themselves as experts for the battalions of litigators supporting the US utility industry.  Without the ability to sell the NESC to prospective “insiders” the NESC would not likely be commercial prospect for IEEE.   As the lawsuits and violations and conformance interests make their mark in the fullness of time; we shall see the 2023 NESC “at work”.

IEEE Standards Association: Additional Information, Articles, Tools, and Resources Related to the NESC

Office of the President: Economic Benefits of Increasing Electric Grid Resilience to Weather Outages

Research Tracks:

NARUC Resolution Urging Collaboration Between the National Electrical Safety Code and the National Electrical Code

Reliability of Communication Systems needed for the autonomous vehicle transformation

  1. Smart Grid Technologies:
    • Investigating advanced technologies to enhance the efficiency, reliability, and sustainability of power grids.
  2. Energy Storage Systems:
    • Researching and developing new energy storage technologies to improve grid stability and accommodate intermittent renewable energy sources.
  3. Distributed Generation Integration:
    • Studying methods to seamlessly integrate distributed energy resources such as solar panels and wind turbines into the existing power grid.
  4. Grid Resilience and Security:
    • Exploring technologies and strategies to enhance the resilience of power grids against cyber-attacks, natural disasters, and other threats.
  5. Demand Response Systems:
  6. Advanced Sensors and Monitoring:
    • Developing new sensor technologies and monitoring systems to enhance grid visibility, detect faults, and enable predictive maintenance.
  7. Power Quality and Reliability:
    • Studying methods to improve power quality, reduce voltage fluctuations, and enhance overall grid reliability.
  8. Integration of Electric Vehicles (EVs):
    • Researching the impact of widespread electric vehicle adoption on the grid and developing smart charging infrastructure.
  9. Grid Automation and Control:
    • Exploring advanced automation and control strategies to optimize grid operations, manage congestion, and improve overall system efficiency.
  10. Campus Distribution Grid Selling and Buying 

 


Relevant Technical Literature

IEC 60050 International Electrotechnical Vocabulary (IEV) – Part 601: Generation, transmission and distribution of electricity | April 16

Recommended Practice for Battery Management Systems in Energy Storage Applications | Comments Due March 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

 

Standards:

Presentation | FERC-NERC-Regional Entity Joint Inquiry Into Winter Storm Elliott

IEEE Guide for Joint Use of Utility Poles with Wireline and/or Wireless Facilities

NESC Rule 250B and Reliability Based Design

NESC Requirements (Strength and Loading)

Engineering Analysis of Possible Effects of 2017 NESC Change Proposal to Remove 60′ Exemption

National Electrical Safety Code Workspace


Joint Use of Electric Power Transmission & Distribution Facilities and Equipment

A Framework to Quantify the Value of Operational Resilience for Electric Power Distribution Systems

August 14, 2003 Power Outage at the University of Michigan

Technologies for Interoperability in Microgrids for Energy Access


National Electrical Safety Code: Revision Cycles 1993 through 2023

 


February 24, 2023

The new code goes into effect 1 February 2023, but is now available for access on IEEE Xplore! Produced exclusively by IEEE, the National Electrical Safety Code (NESC) specifies best practices for the safety of electric supply and communication utility systems at both public and private utilities.  The bibliography is expanding rapidly:

NESC 2023: Introduction to the National Electrical Safety Code

NESC 2023: Rule Changes

NESC 2023Safety Rules for Installation and Maintenance of Overhead Electric Supply

NESC 2023Safety Rules for the Installation and Maintenance of Underground Electric Supply and Communication Lines

NESC 2023: Rules for Installation and Maintenance of Electric Supply Stations

IEEE Digital Library

Grid Edge Visibility: Gaps and a road map


October 31, 2022

The IEEE NESC technical committee has released a “fast track” review of proposed changes to fault-managed power system best practice:

CP5605 Provides a definition of new Fault Managed Power System (FMPS) circuits used for the powering of
communications equipment clearly defines what constitutes a FMPS circuit for the purposes of application of the NESC
Rules of 224 and 344
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXtAAAAADhMnPs

CP5606 Provides new definitions of Communication Lines to help ensure that Fault Managed Power Systems (FMPS)
circuits used for the exclusive powering of communications equipment are clearly identified as communications lines
and makes an explicit connection to Rule 224B where the applicable rules for such powering circuits are found.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXpAAAAAFfvWIs

CP5607 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXuAAAAAEEt3p4

CP5608 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXvAAAAAGrzyeI

We refer them to the IEEE Education & Healthcare Facilities Committee for further action, if any.

 


August 5, 2022

We collaborate closely with the IEEE Education & Healthcare Facilities Committee (IEEE E&H) to negotiate the standard of care for power security on the #SmartCampus  since many campus power systems are larger than publicly regulated utilities.  Even when they are smaller, the guidance in building the premise wiring system — whether the premise is within a building, outside the building (in which the entire geography of the campus footprint is the premise), is inspired by IEEE Standards Association administrated technical committees.

Northeast Community College | Norfolk, Nebraska

Today we begin a list of noteworthy changes to be understood in the next few Power colloquia.  See our CALENDAR for the next online meeting.

  1. New rules 190 through 195 cover photovoltaic generating stations.  Rule 116c adds an exception for short lengths of insulated power cables and short-circuit protection if the situation involves fewer than 1,000 volts.
  2. Rule 320B has been revised to clarify separations that apply to communications and supply in different conduit systems.
  3. Table 410-4 is based on the latest arc flash testing on live-front transformers.
  4. Rule 092A adds an exception allowing protection, control, and safety battery systems to not be grounded.
  5. Rules 234 B1, C1, D1 were revised to better present vertical and horizontal wind clearances, and to coordinate requirements with the new Table 234-7.
  6. Rule 120A was revised to provide correction factors for clearances on higher elevations.
  7. Table 253-1 has been revised to reduce the load factor for fiber-reinforced polymer components under wire tension—including dead ends—for Grade C construction.
  8. Rule 410A now requires a specific radio-frequency safety program for employees who might be exposed.
  9. In the Clearances section, as well as in the specification of the Grade of Construction in Table 242-1, the Code further clarifies the use of non-hazardous fiber optic cables as telecom providers continue to expand their networks.
  10. Revisions in the Strength & Loading sections include modified Rule 250C, which addresses extreme wind loading for overhead lines. Two wind maps are now provided instead of the previous single one. A map for Grade B, the highest grade of construction, with a Mean Recurrence Interval (MRI) of 100 years (corresponding to a one percent annual probability of occurrence) is provided in place of the previous 50–90-year MRI map. For Grade C construction, a separate 50-year MRI (two percent annual probability of occurrence) map is now provided. In the previous Code, a factor was applied to the 50–90-year MRI map for application to Grade C.
  11. Changes were also made to the method of determining the corresponding wind loads, consistent with the latest engineering practices as an example of a Code revision focused on public safety, the ground end of all anchor guys adjacent to regularly traveled pedestrian thoroughfares, such as sidewalks, and similar places where people can be found must include a substantial and conspicuous marker to help prevent accidents. The previous Code did not require the marking of every such anchor guy.
  12. Significant revisions were made in Section 14 covering batteries. Previous editions of the code were based on lead-acid technology and batteries only used for backup power. The 2023 Code incorporates the new battery technologies and addresses energy storage and backup power.
  13. A new Section 19 of the code covers photovoltaic generating stations, with sections addressing general codes, location, grounding configurations, vegetation management, DC overcurrent protection, and DC conductors. These new rules accommodate large-scale solar power projects.
  14. In the Clearances section, all rules for wireless antenna structures have been consolidated in the equipment section (Rule 238 and 239), which makes the Code more user-friendly.
  15. A new subcommittee was created focusing on generating stations, with the original subcommittee continuing to address substations.
  16. A working group is investigating Fault Managed Power Systems (FMPS) cables as the technology may be used for 5G networks. The team is looking at possible impacts, including clearances and work rules.

 


February 18, 2021

 

Several proposals recommending improvements to the 2017 National Electrical Safety Code (NESC) were submitted to the IEEE subcommittees drafting the 2022 revision of the NESC.   Some of the proposals deal with coordination with the National Electrical Code — which is now in its 2023 revision cycle.  Keep in mind that that NESC is revised every 5 years at the moment; the NEC is revised every 3 years.

The original University of Michigan standards advocacy enterprise has been active in writing the NESC since the 2012 edition and set up a workspace for use by electrical professionals in the education industry.   We will be using this workspace as the 2022 NESC continues along its developmental path:

IEEE 2022 NESC Workspace

The revision schedule — also revised in response to the circumstances of the pandemic — is linked below::

NESC 2023 Edition Revision Schedule*

 

The NESC is a standing item on the 4-times monthly teleconferences of the IEEE Education & Healthcare Facilities committee.  The next online meeting is shown on the top menu of the IEEE E&H website:

IEEE E&H Committee

We have a copy of the first draft of the 2023 NESC and welcome anyone to join us for an online examination during any of Power & ICT teleconferences.  See our CALENDAR for the next online meeting.

Business unit leaders, facility managers and electrical engineers working in the education facilities industry may be interested in the campus power system reliability database.   Forced outages on large research campuses, for example, can have enterprise interruption cost of $100,000 to $1,000,000 per minute.    The campus power system forced outage database discriminates between forced outages attributed to public utility interruptions and forced outages attributed to the university-owned power system.   The E&H committee will convey some of the discipline applied by the IEEE 1366 technical committee into its study of campus power systems and, ultimately, setting a benchmark for the standard of care for large university power systems.

 

 

* The IEEE changed the nominal date of the next edition; likely owed to pandemic-related slowdown typical for most standards developing organizations.

Issue: [16-67]

Contact: Mike Anthony, Robert G. Arno, Lorne Clark, Nehad El-Sharif, Jim Harvey, Kane Howard, Joe Weber, Guiseppe Parise, Jim Murphy

Category: Electrical, Energy Conservation & Management, Occupational Safety

ARCHIVE: University of Michigan Advocacy in the NESC 2007 – 2017


LEARN MORE:

P1366 – Guide for Electric Power Distribution Reliability Indices 

University Design Guidelines that reference the National Electrical Safety Code

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content