Risk Assessment in Emergency Facilities

Loading
loading...

Risk Assessment in Emergency Facilities

January 29, 2026
mike@standardsmichigan.com

No Comments

 

Critical Operations Power Systems: Improving Risk Assessment in Emergency Facilities with Reliability Engineering

University of Michigan | Ann Arbor, Michigan
HP Critical Facilities Services | Bethesda, Maryland
Mark Beirne

DLB Associates | Chicago, Illinois

Abstract. The key feature of this article is the application of quantitative method for evaluating risk and conveying the results into a power system design that is scaled according to hazards present in any given emergency management district. These methods employ classical lumped parameter modeling of power chain architectures and can be applied to any type of critical facility, whether it is a stand-alone structure, or a portion of stand-alone structure, such as a police station or government center. This article will provide a risk assessment roadmap for one of the most common critical facilities that should be designated as COPS per NEC 708-a 911 call center. The existing methods of reliability engineering will be used in the risk assessment.

 

* Robert Schuerger is the lead author on this paper

CLICK HERE to order complete article: IEEE Industry Applications Magazine | Volume 19 Issue 5 • Sept.-Oct.-2013

 

Floor & Pathway Safety

January 28, 2026
mike@standardsmichigan.com

No Comments

“Weather is fate”

Charles Louis de Secondat, Baron de La Brède et de Montesquieu

“Road to Versailles at Louveciennes” 1869 Camille Pissarro

Today and its Slip and Fall season everywhere. Accordingly, at the usual hour, we review best practice literature for the safety and sustainability of the surfaces beneath our feet; with special focus on the risk aggregation in educational estates.

Bates v. State Bar of Arizona, 433 U.S. 350 (1977)

Provision of Slip Resistance on Walking/Working Surfaces


Related coverage:

Heat tracing is a process used to maintain or raise the temperature of pipes and vessels in order to prevent freezing, maintain process temperature, or ensure that products remain fluid and flow through the system properly.

Heat tracing works by using an electric heating cable or tape that is wrapped around the pipe or vessel, and then insulated to help retain the heat. The heating cable is connected to a power source and temperature control system that maintains the desired temperature by regulating the amount of heat output from the cable. Heat tracing is commonly used in industrial applications where temperature control is critical, such as in chemical plants, refineries, and oil and gas facilities.

There are several types of heat tracing, including electric heat tracing, steam tracing, and hot water tracing, each of which have their own unique advantages and disadvantages. The selection of the appropriate type of heat tracing depends on the specific application and the required temperature range, as well as factors such as cost, maintenance, and safety considerations.

The literature for snow and ice management (and enjoyment) produced by these standards-setting organizations:

Accredited Snow Contractors Association

American Society of Civil Engineers

American Society of Mechanical Engineers

ASTM International

FM Global

Destructive Deep Freeze Strikes Cold and Hot Regions Alike

Institute of Electrical & Electronic Engineers

Electrical Heat Tracing: International Harmonization — Now and in the Future

International Code Council

International Building Code: Chapter 15 Roof Assemblies and Rooftop Structures

National Electrical Contractors Association

National Fire Protection Association

Winter is Coming: Is Your Facility Protected? (Holly Burgess, November 2022)

National Electrical Code: Articles 426-427

National Floor Safety Institute

Snow and Ice Management Association

Underwriters Laboratories

Manufacturers:

Chromalox Electrical Heat Tracing Systems Design Guide



It is a surprisingly large domain with market-makers in every dimension of safety and sustainability; all of whom are bound by state and federal regulations.

Join us at 16:00 UTC with the login credentials at the upper right of our home page.


There have been several recent innovations that have made it possible for construction activity to continue through cold winter months. Some of the most notable ones include:

  1. Heated Job Site Trailers: These trailers are equipped with heating systems that keep workers warm and comfortable while they take breaks or work on plans. This helps to keep morale up and prevent cold-related health issues.
  2. Insulated Concrete Forms (ICFs): ICFs are prefabricated blocks made of foam insulation that are stacked together to form the walls of a building. The foam insulation provides an extra layer of insulation to keep the building warm during cold winter months.
  3. Warm-Mix Asphalt (WMA): WMA is a type of asphalt that is designed to be used in colder temperatures than traditional hot-mix asphalt. This allows road construction crews to work through the winter months without having to worry about the asphalt cooling and becoming unusable.
  4. Pneumatic Heaters: These heaters are used to warm up the ground before concrete is poured. This helps to prevent the concrete from freezing and becoming damaged during the winter months.
  5. Electrically Heated Mats: These mats are placed on the ground to prevent snow and ice from accumulating. This helps to make the job site safer and easier to work on during the winter months.

Overall, these innovations have made it possible for construction crews to work through the winter months more comfortably and safely, which has helped to keep projects on schedule and minimize delays.

Somewhat related:

Property Loss Prevention

January 28, 2026
mike@standardsmichigan.com
, ,
No Comments

Architect and Engineers Data Sheet Download | Updates January 2026

These are generally downloads.  We are happy to pick through the changes to the Electrical stack depending upon interest.

Left Panel Of George Julian Zolnay’s Allegorical “Academic, Business & Manual Education” Granite Frieze At Francis L. Cardozo High School (Washington, DC)

All fifty United States have their own “signature” disaster with which to reckon; some more than others.   California has earthquakes, Florida has hurricanes, Missouri has floods; and so on,  Life and property loss are preventable; but losses will persist because technical solutions notwithstanding, culture determines human behavior.  It is impossible to be alive and safe.

FM Global is one of several organizations that curate privately developed consensus products that set the standard of care for many industries; education communities among them.  These standards contribute to the reduction in the risk of property loss due to fire, weather conditions, and failure of electrical or mechanical equipment.  They incorporate nearly 200 years of property loss experience, research and engineering results, as well as input from consensus standards committees, equipment manufacturers and others.

If you want FMGlobal as your insurance carrier, or to supplement your organization’s self-insurance program, then you will likely be assigned an FMGlobal conformity professional.

A scan of its list data sheets indicate a number of noteworthy updates of documents establishing minimum requirements for safety technologies common in education facilities:

Technical Reports Supporting Code Change

Note that the bulk of the safety concepts in the foregoing titles incorporate by reference the safety concepts that cross our radar every day   FM Global provides direct access to the full span of its documents at this link:

FM GLOBAL PROPERTY LOSS PREVENTION DATA SHEETS

Note FM Global updates its standards every three months:

Standards in Progress

To respond to calls for public consultation you will need to set up (free) access credentials.

We keep FMGlobal titles — and the literature of other property insurers involved in standards setting — on the standing agenda of our Risk, Snow and Prometheus colloquia.  See our CALENDAR for the next meeting.

Issue: [Various]

Category: Risk, Facility Asset Management


More

Deloitte University: Innovation in Insurance

University of Pennsylvania demonstrates the critical importance of sprinklers in dormitories

Syracuse University presents an eclectic mix of risk management challenges

Jackson Laboratory

Representative force majeure clauses.

Example 1: Basic Force Majeure Clause

“Neither party shall be liable for any failure or delay in performance of its obligations under this agreement due to events beyond its reasonable control, including but not limited to acts of God, war, terrorism, civil commotion, labor strikes, and natural disasters. The affected party shall promptly notify the other party of the force majeure event and take reasonable steps to mitigate its impact on performance. During the continuance of such events, the obligations of the affected party shall be suspended, and the time for performance shall be extended.”

Example 2: Detailed Force Majeure Clause

“In the event that either party is unable to perform its obligations under this agreement due to a force majeure event, the affected party shall promptly notify the other party in writing, specifying the nature and anticipated duration of the force majeure event. Force majeure events shall include, but are not limited to, acts of God, strikes, lockouts, government action or inaction, war, terrorism, epidemics, and natural disasters. The affected party shall use reasonable efforts to overcome or mitigate the effects of the force majeure event. If the force majeure event continues for a period of [specified duration], either party may terminate this agreement by providing written notice to the other party.”

 

 

Prevention of Slips, Trips and Falls

January 28, 2026
mike@standardsmichigan.com
No Comments

“Winterlandschaft” | Aert van der Neer (1655)

The mission of the National Floor Safety Institute (NFSI) is to aid in the prevention of slips, trips-and-falls through education, research, and standards development.  NFSI provides a wide range of services including independent product testing and certification, educational training, and standards development.   Its consensus product library is linked below:

Our Standards

We track several NFSI products for the education facility industry; one of which is linked below:

B101.6 STANDARD GUIDE FOR COMMERCIAL ENTRANCE MATTING IN REDUCING SLIPS, TRIPS AND FALLS.

At the moment the 2012 edition linked above appears to be the current version.   User-interests in the education facility industry — custodial mangers and staff, for example –are encouraged to communicate directly with Russell Kendzior at NFSI, P.O. Box 92607, Southlake, TX 76092, (817) 749-1700, russk@nfsi.org.

Brigham Young University

There are several accredited standards developers in this space and our algorithm tracks them all.  We place this product suite on the standing agenda of our monthly Interior Fixture & Hygiene online meeting; open to everyone.  Use the login credentials at the upper right of our home page to log in.

Issue: [18-193]

Category: Risk Management, Interior Fixtures & Hygiene, Facility Asset Management

Colleagues:  John Lawter, Richard Robben

 


More:

Floor Safety

NFSI Board of Directors Terminates Relationship with ANSI, January 31, 2020

 

Snow Management

January 28, 2026
mike@standardsmichigan.com
, , ,
No Comments

“A Morning Snow–Hudson River” 1910 George Wesley Bellows | Smithsonian American Art Museum

This time of year in the Northern Hemisphere we keep an eye on snow management  standards; among them titles developed by the Accredited Snow Contractors Association.  The barriers to entry into this domain are relatively low and, arguably undisciplined; hence the need for standards setting.  Even when only partially adopted, use of ANSI accredited standards reduces the “wheel reinvention” that is common to the business side of the education industry when new initiatives, or continuous improvement programs are undertaken without consideration of already existing leading practice discovery by ANSI-accredited technical committees.  Start here:

ASCA Standards Home Page

The parent title for the emergent ASCA bibliography is System Requirements for Snow and Ice Management Services; free to ASCA members.  The current version is dated 2014 and will likely be updated and/or re-affirmed.  The circumstances of the pandemic has slowed the work of many standards setting committees.  The safety and sustainability concepts remain intact, however.  Among them:

  • If snow can be removed from a lot or hard surface and appropriate room exists, always push the snow as far back as possible beyond the curb or lot edge to make room for additional snow.
  • If snow cannot be removed from a lot or hard surface, always place snow piles on a predetermined spot approved by the client and marked on the snow contractor’s preseason site report.  
  • Do not pile snow in a handicap parking space.
  • Do not bury or plow snow onto a fire hydrant, post indicator valve, or fire hookup along the building wall.
  • Avoid placement of snow piles where thaw/melt off can run across the parking lot surface. Try to place piles near drain grates to avoid icy situations during thaw-and-refreeze periods.
  • Do not push snow against a building.
  • Do not block building doorways or emergency exits.
  • Do not block pedestrian walks or paths with snow piles.
  • Do not push snow onto motor vehicles.
  • Do not plow snow in front of or bury trash containers. Sidewalk labor must shovel inside trash container enclosure for access to the doors. If the container is not in an enclosure, create a clear path to the access doors or panels.

"Liberty, when it begins to take root, is a plant of rapid growth" - (Letter to James Madison, March 2, 1788)“The cold was our pride, the snow was our beauty.” — F. Scott Fitzgerald ('Wiinter Dreams' 1922)

ASCA has more recently released another title — Standard Practice for Procuring and Planning Snow & Ice Management Services — that seems (by its title alone) to be a companion consensus product.  From its prospectus:

This standard of practice covers essential procuring and planning for snow and ice management services. Standards for procuring and planning are essential for business continuity and to improve safety for patrons, tenants, employees, and others in the general public. Knowing how to describe service requirements in a snow and ice management request for proposal (RFP) is an important component to providing effective services, particularly where winter weather is a variable. This standard practice provides guidance on the snow and ice management procurement and planning process to aid in the creation of RFPs, contracts, agreements, and monitoring procedures. This standard will not be submitted for consideration as an ISO, IEC, or ISO/IEC JTC-1 standard.

Apart from these titles, we do not see any recent happening in the ASCA standards setting enterprise.  We will pass information along as it becomes available.  Alternatively, you may communicate directly with ASCA, 5811 Canal Road  Valley View, OH 44125, Ph: (800) 456-0707.  Most education communities employ a combination of permanent and contract staff for these services.

We maintain the ASCA bibliography on our Snow & Ice colloquia  See our CALENDAR for the next online meeting; open to everyone.

Issue: [13-104]

Category:  Grounds and Landscaping, Exterior, Public Safety, Risk Management

Colleagues: John Lawter, Richard Robben

More>>

ARCHIVE / Snow & Ice


 

2028 National Electrical Safety Code

January 27, 2026
mike@standardsmichigan.com
,
No Comments

IEEE Standards Association Public Review

Related Issues and Recent Research | Federal Legislation

“Rain in Charleston” 1951 Thomas Fransioli

This title sets the standard of care for construction, operation and maintenance of power and telecommunication infrastructure on the supply side of the point of common coupling. It is the first title to contemplate when weather disasters happen; with most public utilities bound to its best practice assertions by statute. Pre-print of Change Proposals for changes to appear in 2028 Edition will be available by 1 July 2025; with 24 March 2026 as the close date for comments on proposed changes.

Project Introduction for the 2028 Edition (2:39 minutes)

NESC 2028 Revision Schedule

Changes proposals for the Edition will be received until 15 May 2024

Proposals for the 2028 National Electrical Safety Code

Project Workspace: Update Data Tables in IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

Painting by Linda Kortesoja Klenczar

Federal Energy Regulatory Commission: Electrical Resource Adequacy

Relevant Research

NARUC Position on NFPA (NEC) and IEEE (NESC) Harmonization

The standard of care for electrical safety at high and low voltage is set by both the NEC and the NESC. There are gaps, however (or, at best “gray areas”) — the result of two technical cultures: utility power culture and building fire safety culture. There is also tradition. Local system conditions and local adaptation of regulations vary. Where there is a gap; the more rigorous requirement should govern safety of the public and workers.

The 2023 National Electrical Safety Code (NESC)– an IEEE title often mistaken for NFPA’s National Electrical Code (NEC) — was released for public use about six months ago; its normal 5-year revision cycle interrupted by the circumstances of the pandemic.   Compared with the copy cost of the NEC, the NESC is pricey, though appropriate for its target market — the electric utility industry.  Because the 2023 revision has not been effectively “field tested” almost all of the available support literature is, effectively, “sell sheets” for pay-for seminars and written by authors presenting themselves as experts for the battalions of litigators supporting the US utility industry.  Without the ability to sell the NESC to prospective “insiders” the NESC would not likely be commercial prospect for IEEE.   As the lawsuits and violations and conformance interests make their mark in the fullness of time; we shall see the 2023 NESC “at work”.

IEEE Standards Association: Additional Information, Articles, Tools, and Resources Related to the NESC

Office of the President: Economic Benefits of Increasing Electric Grid Resilience to Weather Outages

Research Tracks:

NARUC Resolution Urging Collaboration Between the National Electrical Safety Code and the National Electrical Code

Reliability of Communication Systems needed for the autonomous vehicle transformation

  1. Smart Grid Technologies:
    • Investigating advanced technologies to enhance the efficiency, reliability, and sustainability of power grids.
  2. Energy Storage Systems:
    • Researching and developing new energy storage technologies to improve grid stability and accommodate intermittent renewable energy sources.
  3. Distributed Generation Integration:
    • Studying methods to seamlessly integrate distributed energy resources such as solar panels and wind turbines into the existing power grid.
  4. Grid Resilience and Security:
    • Exploring technologies and strategies to enhance the resilience of power grids against cyber-attacks, natural disasters, and other threats.
  5. Demand Response Systems:
  6. Advanced Sensors and Monitoring:
    • Developing new sensor technologies and monitoring systems to enhance grid visibility, detect faults, and enable predictive maintenance.
  7. Power Quality and Reliability:
    • Studying methods to improve power quality, reduce voltage fluctuations, and enhance overall grid reliability.
  8. Integration of Electric Vehicles (EVs):
    • Researching the impact of widespread electric vehicle adoption on the grid and developing smart charging infrastructure.
  9. Grid Automation and Control:
    • Exploring advanced automation and control strategies to optimize grid operations, manage congestion, and improve overall system efficiency.
  10. Campus Distribution Grid Selling and Buying 

 


Relevant Technical Literature

IEC 60050 International Electrotechnical Vocabulary (IEV) – Part 601: Generation, transmission and distribution of electricity | April 16

Recommended Practice for Battery Management Systems in Energy Storage Applications | Comments Due March 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

 

Standards:

Presentation | FERC-NERC-Regional Entity Joint Inquiry Into Winter Storm Elliott

IEEE Guide for Joint Use of Utility Poles with Wireline and/or Wireless Facilities

NESC Rule 250B and Reliability Based Design

NESC Requirements (Strength and Loading)

Engineering Analysis of Possible Effects of 2017 NESC Change Proposal to Remove 60′ Exemption

National Electrical Safety Code Workspace


Joint Use of Electric Power Transmission & Distribution Facilities and Equipment

A Framework to Quantify the Value of Operational Resilience for Electric Power Distribution Systems

August 14, 2003 Power Outage at the University of Michigan

Technologies for Interoperability in Microgrids for Energy Access


National Electrical Safety Code: Revision Cycles 1993 through 2023

 


February 24, 2023

The new code goes into effect 1 February 2023, but is now available for access on IEEE Xplore! Produced exclusively by IEEE, the National Electrical Safety Code (NESC) specifies best practices for the safety of electric supply and communication utility systems at both public and private utilities.  The bibliography is expanding rapidly:

NESC 2023: Introduction to the National Electrical Safety Code

NESC 2023: Rule Changes

NESC 2023Safety Rules for Installation and Maintenance of Overhead Electric Supply

NESC 2023Safety Rules for the Installation and Maintenance of Underground Electric Supply and Communication Lines

NESC 2023: Rules for Installation and Maintenance of Electric Supply Stations

IEEE Digital Library

Grid Edge Visibility: Gaps and a road map


October 31, 2022

The IEEE NESC technical committee has released a “fast track” review of proposed changes to fault-managed power system best practice:

CP5605 Provides a definition of new Fault Managed Power System (FMPS) circuits used for the powering of
communications equipment clearly defines what constitutes a FMPS circuit for the purposes of application of the NESC
Rules of 224 and 344
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXtAAAAADhMnPs

CP5606 Provides new definitions of Communication Lines to help ensure that Fault Managed Power Systems (FMPS)
circuits used for the exclusive powering of communications equipment are clearly identified as communications lines
and makes an explicit connection to Rule 224B where the applicable rules for such powering circuits are found.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXpAAAAAFfvWIs

CP5607 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXuAAAAAEEt3p4

CP5608 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXvAAAAAGrzyeI

We refer them to the IEEE Education & Healthcare Facilities Committee for further action, if any.

 


August 5, 2022

We collaborate closely with the IEEE Education & Healthcare Facilities Committee (IEEE E&H) to negotiate the standard of care for power security on the #SmartCampus  since many campus power systems are larger than publicly regulated utilities.  Even when they are smaller, the guidance in building the premise wiring system — whether the premise is within a building, outside the building (in which the entire geography of the campus footprint is the premise), is inspired by IEEE Standards Association administrated technical committees.

Northeast Community College | Norfolk, Nebraska

Today we begin a list of noteworthy changes to be understood in the next few Power colloquia.  See our CALENDAR for the next online meeting.

  1. New rules 190 through 195 cover photovoltaic generating stations.  Rule 116c adds an exception for short lengths of insulated power cables and short-circuit protection if the situation involves fewer than 1,000 volts.
  2. Rule 320B has been revised to clarify separations that apply to communications and supply in different conduit systems.
  3. Table 410-4 is based on the latest arc flash testing on live-front transformers.
  4. Rule 092A adds an exception allowing protection, control, and safety battery systems to not be grounded.
  5. Rules 234 B1, C1, D1 were revised to better present vertical and horizontal wind clearances, and to coordinate requirements with the new Table 234-7.
  6. Rule 120A was revised to provide correction factors for clearances on higher elevations.
  7. Table 253-1 has been revised to reduce the load factor for fiber-reinforced polymer components under wire tension—including dead ends—for Grade C construction.
  8. Rule 410A now requires a specific radio-frequency safety program for employees who might be exposed.
  9. In the Clearances section, as well as in the specification of the Grade of Construction in Table 242-1, the Code further clarifies the use of non-hazardous fiber optic cables as telecom providers continue to expand their networks.
  10. Revisions in the Strength & Loading sections include modified Rule 250C, which addresses extreme wind loading for overhead lines. Two wind maps are now provided instead of the previous single one. A map for Grade B, the highest grade of construction, with a Mean Recurrence Interval (MRI) of 100 years (corresponding to a one percent annual probability of occurrence) is provided in place of the previous 50–90-year MRI map. For Grade C construction, a separate 50-year MRI (two percent annual probability of occurrence) map is now provided. In the previous Code, a factor was applied to the 50–90-year MRI map for application to Grade C.
  11. Changes were also made to the method of determining the corresponding wind loads, consistent with the latest engineering practices as an example of a Code revision focused on public safety, the ground end of all anchor guys adjacent to regularly traveled pedestrian thoroughfares, such as sidewalks, and similar places where people can be found must include a substantial and conspicuous marker to help prevent accidents. The previous Code did not require the marking of every such anchor guy.
  12. Significant revisions were made in Section 14 covering batteries. Previous editions of the code were based on lead-acid technology and batteries only used for backup power. The 2023 Code incorporates the new battery technologies and addresses energy storage and backup power.
  13. A new Section 19 of the code covers photovoltaic generating stations, with sections addressing general codes, location, grounding configurations, vegetation management, DC overcurrent protection, and DC conductors. These new rules accommodate large-scale solar power projects.
  14. In the Clearances section, all rules for wireless antenna structures have been consolidated in the equipment section (Rule 238 and 239), which makes the Code more user-friendly.
  15. A new subcommittee was created focusing on generating stations, with the original subcommittee continuing to address substations.
  16. A working group is investigating Fault Managed Power Systems (FMPS) cables as the technology may be used for 5G networks. The team is looking at possible impacts, including clearances and work rules.

 


February 18, 2021

 

Several proposals recommending improvements to the 2017 National Electrical Safety Code (NESC) were submitted to the IEEE subcommittees drafting the 2022 revision of the NESC.   Some of the proposals deal with coordination with the National Electrical Code — which is now in its 2023 revision cycle.  Keep in mind that that NESC is revised every 5 years at the moment; the NEC is revised every 3 years.

The original University of Michigan standards advocacy enterprise has been active in writing the NESC since the 2012 edition and set up a workspace for use by electrical professionals in the education industry.   We will be using this workspace as the 2022 NESC continues along its developmental path:

IEEE 2022 NESC Workspace

The revision schedule — also revised in response to the circumstances of the pandemic — is linked below::

NESC 2023 Edition Revision Schedule*

 

The NESC is a standing item on the 4-times monthly teleconferences of the IEEE Education & Healthcare Facilities committee.  The next online meeting is shown on the top menu of the IEEE E&H website:

IEEE E&H Committee

We have a copy of the first draft of the 2023 NESC and welcome anyone to join us for an online examination during any of Power & ICT teleconferences.  See our CALENDAR for the next online meeting.

Business unit leaders, facility managers and electrical engineers working in the education facilities industry may be interested in the campus power system reliability database.   Forced outages on large research campuses, for example, can have enterprise interruption cost of $100,000 to $1,000,000 per minute.    The campus power system forced outage database discriminates between forced outages attributed to public utility interruptions and forced outages attributed to the university-owned power system.   The E&H committee will convey some of the discipline applied by the IEEE 1366 technical committee into its study of campus power systems and, ultimately, setting a benchmark for the standard of care for large university power systems.

 

 

* The IEEE changed the nominal date of the next edition; likely owed to pandemic-related slowdown typical for most standards developing organizations.

Issue: [16-67]

Contact: Mike Anthony, Robert G. Arno, Lorne Clark, Nehad El-Sharif, Jim Harvey, Kane Howard, Joe Weber, Guiseppe Parise, Jim Murphy

Category: Electrical, Energy Conservation & Management, Occupational Safety

ARCHIVE: University of Michigan Advocacy in the NESC 2007 – 2017


LEARN MORE:

P1366 – Guide for Electric Power Distribution Reliability Indices 

University Design Guidelines that reference the National Electrical Safety Code

 

Natural Gas Transmission & Distribution

January 27, 2026
mike@standardsmichigan.com
,
No Comments

Natural gas systems are deeply integrated into educational settlements: providing fuel to district energy plants, hospital backup power systems, hot water systems to residence halls and kitchens to name a few. The American Gas Association catalog is fairly stable; reflected in the relative reliability of the US natural gas distribution network. Still, the door is open for discovering and promulgating best practice; driven largely by harmonization with other standards and inevitable “administrivia”. The current edition of the National Fuel Gas Code (ANSI Z223.1) is dated 2024 and harmonizes with NFPA 54.

Poster showing benefits of gas lighting and heating (Italy, 1902)

 

 

 

 

Most school districts, colleges, universities and university-affiliated health care systems depend upon a safe and reliable supply of natural gas.  Owing to safety principles that have evolved over 100-odd years you hardly notice them.  When they fail you see serious drama and destruction.

One of the first names in standards setting for the natural gas industry in the United States is the American Gas Association (AGA) which represents companies delivering natural gas safely, reliably, and in an environmentally responsible way.  From the AGA vision statement:

“….(AGA) is committed to leveraging and utilizing America’s abundant, domestic, affordable and clean natural gas to help meet the nation’s energy and environmental needs….”

We do not advocate in natural gas standards at the moment but AGA standards do cross our radar because they assure energy security to the emergent #SmartCampus.  We find AGA standards referenced in natural gas service contracts (for large district energy plants, for example) or in construction contracts for new buildings.  As with all other energy technological developments we keep pace with, improvements are continual even though those improvements are known to only a small cadre of front line engineers and technicians.

AGA has released seventeen redlines containing proposed changes to one of its parent documents for natural gas delivery”  GPTC Z380.1 Guide for Gas Transmission, Distribution, and Gathering Piping Systems. The redlines are listed in the link below:

American Gas Association Standards Public Review Home Page

Public consultation on the 2027 National Fuel Gas Code closes June 4, 2024.

You may obtain an electronic copy from: https://www.aga.org/research/policy/ansi-public-reviews/.  Comments should be emailed to Betsy Tansey GPTC@aga.org, Secretary, ASC GPTC Z380. Any questions you may have concerning public reviews please contact Betsy Tansey (btansey@aga.org) as well.

University of Michigan Central Heating Plant

We meet online every day at 11 AM Eastern time to march through technical specifics of all technical consensus products open for public comment.  Feel free to click in.   Also, we meet with mechanical engineering experts from both the academic and business side of the global education community once per month.  See our CALENDAR for our next Mechanical Engineering monthly teleconference; open to everyone.

Issue: [19-27]

Category: Energy, Mechanical, Risk Management

Colleagues: Mike Anthony, Richard Robben, Larry Spielvogel

 

Reaction: January 22 Open Meeting

January 27, 2026
mike@standardsmichigan.com
No Comments

 

FERC HOME

The current full complement of five FERC commissioners is relatively new as of December 23, 2025. The two most recent additions — Chairman Laura V. Swett (term expiring June 30, 2030) and Commissioner David A. LaCerte (term expiring June 30, 2026) — were confirmed by the U.S. Senate on October 7, 2025.
Ω
This restored FERC to its full five members after prior vacancies and transitions earlier in the year. The other commissioners (David Rosner, Lindsay S. See, and Judy W. Chang) have been in place since mid-2024 or earlier, but the current lineup only fully formed about two and a half months ago.
Ω
This followed changes tied to the new administration, including shifts in majority and leadership.
January 22.  Issues of interest discussed at the FERC Open Meeting on January 22, 2026, centered primarily on electric sector matters related to generator interconnection reforms, expedited processes for resource adequacy.  Our interest lies in the effect of FERC action will have on the utility costs of educational settlements which, of course, practically involves all utilities and how those decisions are reflected in state tariffs.
One issue of particular interest for Michigan: Midcontinent Independent System Operator, Inc. (MISO) Expedited Resource Addition Study (ERAS) process (Docket No. ER25-2454-002): The Commission addressed arguments on rehearing and sustained its prior July 21, 2025, order approving MISO’s ERAS framework. This provides an expedited interconnection study process for generation projects addressing urgent near-term resource adequacy and reliability needs in the MISO region.  Discussions involved balancing reliability concerns (e.g., load growth, resource shortfalls) against claims of undue discrimination or preference in interconnection queuing, as raised by public interest groups.  We will see these conclusions reflected in Michigan Public Service Commission action.Other agenda elements likely included routine administrative matters (e.g., A-1 Agency Administrative Matters, A-2 Customer Matters/Reliability/Security/Market Operations) and consent items (often non-controversial electric, gas, hydro, or certificate matters voted en bloc without discussion).
No major presentations were noted, and the meeting focused on these reliability/interconnection and market integrity issues amid broader grid challenges like queue backlogs, rapid load growth, and transitioning resources.The Q&A afterward involved energy media, with emphasis by Laura V. Swett on reliability concerns ahead of likely winter storms. The next public open meeting is scheduled for Thursday, February 19th. 

December 18. The public meetings are dominated by administrative procedures and mutual admiration.  Technical issues that require in-depth, expert-level understanding of complex laws, rules, guidelines, and precedents beyond surface-level awareness appear deeper into the FERC website.  There you will generally find:

  • Nuanced interpretation of statutes and agency decisions
  • Awareness of historical context and evolving policies
  • Insight into how rules interact with technical, economic, and operational realities
  • Impacts of changes and navigate compliance strategically

As interest and time allows we can pick through technical specifics regarding FERC oversight of interstate electricity with the IEEE colleagues.

Ω

Ω

 

 

Whats On a Utility Pole

Midwest Energy Communications: What’s On a Utility Pole?

 

Heat Tracing Installation

January 27, 2026
mike@standardsmichigan.com
, , ,
No Comments

“Vue de toits (effet de neige)” 1878 Gustave Caillebotte

One of the core documents for heat tracing is entering a new 5-year revision cycle; a consensus standard that is especially relevant this time of year because of the personal danger and property damage that is possible in the winter months.  Education communities depend upon heat tracing for several reasons; just a few of them listed below:

  • Ice damming in roof gutters that can cause failure of roof and gutter structural support
  • Piping systems for sprinkler systems and emergency power generation equipment
  • Sidewalk, ramp and stairway protection

IEEE 515 Standard for the Testing, Design, Installation, and Maintenance of Electrical Resistance Trace Heating for Industrial Applications is one of several consensus documents for trace heating technology.   Its inspiration originates in the petrochemical industry but its principles apply to all education facilities exposed to cold temperature and snow.   From its prospectus:

This standard provides requirements for the testing, design,installation, and maintenance of electrical resistance trace heating in general industries as applied to pipelines, vessels, pre-traced and thermally insulated instrument tubing and piping, and mechanical equipment. The electrical resistance trace heating is in the form of series trace heaters, parallel trace heaters, and surface heating devices. The requirements also include test criteria to determine the suitability of these heating devices utilized in unclassified (ordinary) locations.

Its principles can, and should be applied with respect to other related documents:

National Electrical Code Article 427

NECA 202 Standard for Installing and Maintaining Industrial Heat Tracing Systems

IEC 62395 Electrical resistance trace heating systems for industrial and commercial applications

 ASHRAE 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings

Lowell House / Harvard University

We are happy to explain the use of this document in design guidelines and/or construction specifications during any of our daily colloquia.   We generally find more authoritative voices in collaborations with the IEEE Education & Healthcare Facilities Committee which meets 4 times per month in Europe and in the Americas.  We maintain this title on the standing agenda of our Snow & Ice colloquia.  See our CALENDER for the next online meeting.

Issue: [18-331]

Colleagues: Mike Anthony, Jim Harvey, Kane Howard

Category: Electrical, #SmartCampus


LEARN MORE:

Good Building Practice for Northern Facilities

Electrical Heat Tracing:International Harmonization Now and in the Future, IEEE Industry Standards Magazine, May/June 2002 pages 50-56

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Standards Michigan
error: Content is protected !!
Skip to content