Campus Electric Transit

Loading
loading...

Campus Electric Transit

July 15, 2025
mike@standardsmichigan.com
No Comments

University of Michigan | Washtenaw County

Widespread use of electric vehicles (EVs) on large university campuses offers significant possibilities but also presents challenges. Possibilities include reduced carbon emissions, aligning with sustainability goals, as EVs produce zero tailpipe emissions compared to gasoline-powered vehicles. Campuses could deploy electric shuttles, maintenance vehicles, or shared EV fleets, decreasing reliance on fossil fuels. EVs could integrate with campus microgrids, leveraging renewable energy sources like solar panels. They also promote quieter environments, reducing noise pollution in academic settings. Universities could foster innovation by integrating EV infrastructure into research, such as smart grid technology or battery development.

Pros include environmental benefits, lower operating costs (electricity is cheaper than fuel), and enhanced campus branding as eco-friendly. EVs require less maintenance, saving long-term costs. Students and staff benefit from cleaner air and modern transportation options.

Cons include high upfront costs for EVs and charging infrastructure, straining budgets. Limited range and charging times may disrupt campus operations, especially for time-sensitive tasks. Charging station availability could lead to congestion or inequitable access. Battery production raises ethical concerns about resource extraction. Retrofitting existing fleets and managing grid demand pose logistical hurdles.

Balancing these factors requires strategic planning, but EVs could transform campus mobility sustainably.

We have followed standards setting action in this domain since 1993.   During todays colloquium at 15:00 UTC we will answer questions about our involvement, guided by our Safer-Simpler-Lower Cost – Longer Lasting advocacy in all relevant standards.  Use the login credentials at the upper right of our home page. 

National Electrical Manufacturers Association

NECA Releases Revised Standard for Installing and Maintaining Electric Vehicle Supply Equipment (EVSE)

Gallery: Campus Transportation and Parking

EV Charging Stations Integration into Public Lighting Infrastructure

Electric Vehicle Charging

Campus Micromobility

Fast & Ultra-Fast Charging for Battery Electric Vehicles

Gallery: Electric Vehicle Fire Risk

(C)onnected & (A)utomated (V)ehicle Code

Drivers and Barriers to Implementation of Connected, Automated, Shared, and Electric Vehicles

Electric Vehicle Charging

Et al.

Wireless EV Charging

July 15, 2025
mike@standardsmichigan.com
No Comments

Wireless electric vehicle charging on streets uses electromagnetic induction to transfer power without physical connectors. A primary coil, embedded in the road surface, generates an alternating magnetic field when energized by an external power source. A secondary coil, installed on the EV’s underside, captures this field, inducing an electric current that charges the vehicle’s battery. Efficient power transfer requires precise alignment between coils, often aided by sensors or magnetic guidance systems.

Operating typically at frequencies of 20–100 kHz, the system ensures safe, non-contact energy transfer with efficiencies up to 90%. Power levels vary from 3.3 kW for slow charging to 22 kW or higher for faster systems. Infrastructure includes power inverters, communication modules for vehicle-grid interaction, and safety mechanisms to prevent electromagnetic interference or hazards. Dynamic charging, where EVs charge while moving, extends this concept using sequential coil activation along roads.

Indiana

Electric Vehicle Power Transfer System

July 15, 2025
mike@standardsmichigan.com

No Comments

Updated July 15, 2025

 

2026 National Electrical Code Table of Contents

2026 NEC First Draft: How Did We Get Here?

2026 National Electrical Code

Public Input Transcript: First Draft | Public Comment Transcript: Second Draft

 

2023 National Electrical CodeCurrent Issues and Recent Research

 

2026 National Electrical Code Workspace


August 5, 2021

The 2020 National Electrical Code (NEC) contains significant revisions to Article 625 Electric Vehicle Power Transfer Systems.  Free access to this information is linked below:

2023 National Electrical Code

2020 National Electrical Code

You will need to set up a (free) account to view Article 625 or you may join our colloquium today.

Public input for the 2023 Edition of the NEC has already been received.  The work of the assigned committee — Code Making Panel 12 — is linked below:

NFPA 70_A2022_NEC_P12_FD_PIReport_rev

Mighty spirited debate.   Wireless charging from in-ground facilities employing magnetic resonance are noteworthy.  Other Relevant Articles:

  • Article 240: Overcurrent Protection: This article includes requirements for overcurrent protection devices that could be relevant for EV charging systems.
  • Article 210: Branch Circuits: General requirements for branch circuits, which can include circuits dedicated to EVSE.
  • Article 220: Load Calculations: Guidelines for calculating the electrical load for EVSE installations.
  • Article 230: Services: General requirements for electrical service installations, which can be relevant for EVSE.
  • Article 250: Grounding and Bonding: Requirements for grounding and bonding, which are critical for safety in EVSE installations.

 

Technical committees meet November – January to respond.   In the intervening time it is helpful  break down the ideas that were in play last cycle.  The links below provide the access point:

Public Input Report Panel 12

Public Comment Report Panel 12

Panel 12 Final Ballot

We find a fair amount of administrative and harmonization action; fairly common in any revision cycle.   We have taken an interest in a few specific concepts that track in academic research construction industry literature:

  • Correlation with Underwriters Laboratory product standards
  • Bi-Directional Charging & Demand Response
  • Connection to interactive power sources

As a wiring safety installation code — with a large installer and inspection constituency — the NEC is usually the starting point for designing the power chain to electric vehicles.   There is close coupling between the NEC and product conformance organizations identified by NIST as Nationally Recognized Testing Laboratories; the subject of a separate post.

Edison electric vehicle | National Park Service, US Department of the Interior

After the First Draft is released June 28th public comment is receivable until August 19th.

We typically do not duplicate the work of the 10’s of thousands of National Electrical Code instructors who will be fanning out across the nation to host training sessions for electrical professionals whose license requires mandatory continuing education.  That space has been a crowded space for decades.   Instead we co-host “transcript reading” sessions with the IEEE Education & Healthcare Facilities Committee to sort through specifics of the 2020 NEC and to develop some of the ideas that ran through 2020 proposals but did not make it to final ballot and which we are likely to see on the docket of the 2023 NEC revision.   That committee meets online 4 times monthly.  We also include Article 625 on the standing agenda of our Mobility colloquium; open to everyone.   See our CALENDAR for the next online meeting

Issue: [16-102]

Category: Electrical, Transportation & Parking, Energy

Colleagues: Mike Anthony, Jim Harvey

Workspace / NFPA


More

U.S. NATIONAL ELECTRIC VEHICLE SAFETY STANDARDS SUMMIT | DETROIT, MICHIGAN 2010

Gallery: Electric Vehicle Fire Risk

 

Force Majeure

July 15, 2025
mike@standardsmichigan.com
No Comments

In his books, The Black Swan and Antifragile, Nassim Nicholas Taleb observes that freak disasters—rare, high-impact events—are unpredictable and often underestimated due to their low probability. He calls these “Black Swan” events, characterized by their extreme rarity, severe consequences, and retrospective predictability. Taleb argues that people and systems are overly reliant on normalcy and linear models, ignoring the potential for such outliers.

These disasters expose the fragility of complex systems, like financial markets or infrastructure, which are unprepared for extreme shocks. In Antifragile, he contrasts fragile systems with antifragile ones, which thrive under stress. Taleb emphasizes that freak disasters are not anomalies but inevitable in a complex world, urging risk management that accounts for uncertainty rather than predictability. He critiques overconfidence in forecasting and advocates for building resilience to mitigate the devastating effects of these unpredictable events.

We cover this ground, more than tangentially, in our activism in disaster management standards setting.   Our coverage of this topic dates back to 1993 which the links below should reveal.  We will expand upon this topic as more information is derived from this past week’s events in Kerr County Texas.

 

Disaster 500

Intellectual Property

July 14, 2025
mike@standardsmichigan.com
, ,
No Comments

 

 

It is impossible to overestimate the sensitivity of this topic but poke at it, we will.  At the moment, the less written here; the better.   Much of this domain is outside our wheelhouse; though it has settled on a few first principles regarding patents, trademarks and copyrights relevant to the user-interest we describe in our ABOUT.

Many large research universities have a watchdog guarding its intellectual property and trying to generate income from it, and; of course, for branding.  We will dwell on salient characteristics of the intellectual property domain with which we reckon daily — highlighting the market actors and the standards they have agreed upon.

Additionally, technical standards developers are generally protected by copyright law, as the standards they create are typically considered original works of authorship that are subject to copyright protection.  In the United States, the Copyright Act of 1976 provides copyright protection for original works of authorship, which includes technical standards. This means that the developers of technical standards have the exclusive right to reproduce, distribute, and create derivative works based on their standards, and others must obtain permission or a license to use or reproduce the standards.  

Some technical standards may be subject to certain exemptions or limitations under copyright law.  In the United States, there is a doctrine called “fair use” that allows for limited use of copyrighted works for purposes such as criticism, comment, news reporting, teaching, scholarship, or research, without the need for permission or a license from the copyright owner.  Almost everything we do at Standards Michigan falls under the fair use doctrine.  This is why we have no search feature and most pages are protected.  If we err in this; let us know.  

Innovation management

Why The U.S. And China Fight Over IP

More

  1. Patent Act: This is the primary federal law governing patents in the United States. It sets forth the requirements for obtaining a patent, the rights of patent owners, and the remedies available for infringement.
  2. The Sherman Antitrust Act of 1890 and the Clayton Antitrust Act of 1914 prohibit anticompetitive behavior in the marketplace, including the use of codes and standards to exclude competition.
  3. Title 37 of the Code of Federal Regulations: This contains the rules and procedures related to patents, including rules governing the filing and examination of patent applications.
  4. America Invents Act: This is a major overhaul of the U.S. patent system that was enacted in 2011. It includes provisions such as the transition to a “first-inventor-to-file” system and the creation of new post-grant review procedures for challenging the validity of patents.
  5. Manual of Patent Examining Procedure: This is a guidebook for patent examiners that provides detailed information on the rules and procedures for examining patent applications.
  6. Everett Rogers: Diffusion of innovations
  7. Copyright Law of the United States (Title 17)

 

Protection of Intellectual Property in the Supply Chain

ASTM International Intellectual Property Policy

Healthcare Standards Institute IP Policy

International Code Council Copyright Protection

IEEE Patent Policy

NFPA Regulations and Policies

Underwriters Laboratory Patent Policy

 

Intellectual Property 101

Innovation – Market Acceptance – Standardization – Human Right

Innovation and Competitiveness in Artificial Intelligence

July 14, 2025
mike@standardsmichigan.com

No Comments

The International Trade Administration (ITA) of the U.S. Department of Commerce (DOC) is requesting public comments to gain insights on the current global artificial intelligence (AI) market. Responses will provide clarity about stakeholder concerns regarding international AI policies, regulations, and other measures which may impact U.S. exports of AI technologies. Additionally, the request for information (RFI) includes inquiries related to AI standards development. ANSI encourages relevant stakeholders to respond by ITA’s deadline of October 17, 2022.

Fueling U.S. Innovation and Competitiveness in AI: Respond to International Trade Administration’s Request for Information

Commerce Department Launches the National Artificial Intelligence Advisory Committee

 

Red, White and Blue Smoothie

July 13, 2025
mike@standardsmichigan.com
, , ,
No Comments

University System of Maryland | $12.225B

Strawberries

Blueberries

University of Maryland Extension

Standards Maryland

The choice of red, white, and blue in national flags often carries historical, cultural, and political significance. Here are some reasons why various nations have chosen these colors:

  1. Historical Connections:
    • United States: The colors were chosen for their flag in 1777 and have been interpreted to symbolize valor (red), purity (white), and justice (blue). The colors were influenced by the British Union Jack.
    • France: The Tricolour flag adopted during the French Revolution represents liberty (blue), equality (white), and fraternity (red).
    • United Kingdom: The Union Jack combines elements from the flags of England (red and white), Scotland (blue and white), and Ireland (red and white).
  2. Cultural and Political Significance:
    • Russia: The flag’s colors were adopted from the Dutch flag, symbolizing pan-Slavism (red for bravery, blue for faithfulness, and white for honesty).
    • Netherlands: The Dutch flag’s colors (originally derived from the Prince’s Flag) have historical roots, symbolizing the struggle for independence and liberty.
    • Czech Republic and Slovakia: Both countries use red, white, and blue to represent their Slavic heritage.
  3. Influence and Inspiration:
    • Chile, Costa Rica, and Panama: These countries were influenced by the colors and symbolism of other flags (e.g., the French and American flags) during their independence movements.
    • Australia and New Zealand: Both countries incorporate the Union Jack in their flags, reflecting their colonial history with the United Kingdom.
  4. Symbolism:
    • Croatia, Serbia, and Slovenia: The colors are traditional pan-Slavic colors, representing freedom and national unity.
    • Iceland and Norway: The colors reflect their historical and cultural ties to other Scandinavian countries.

The exact reasons can vary, but often the colors reflect a mix of historical alliances, cultural heritage, and political ideals.

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content