H.R. 8161: Prohibit the Secretary of the Interior and the Secretary of the Army from retiring an energy generation sources

Loading
loading...

H.R. 8161: Prohibit the Secretary of the Interior and the Secretary of the Army from retiring an energy generation sources

May 8, 2024
mike@standardsmichigan.com
No Comments


Laken Riley Act passes 251-170, with 37 Democrats joining all Republicans in support

The murder of Laken Riley occurred on February 22, 2024, in Athens, Georgia. Laken Riley, a 22-year-old nursing student at Augusta University, disappeared when she was jogging at the University of Georgia (UGA). Her body was found near a lake of a wooded area at UGA; her death was caused by blunt force trauma.  The police described Riley’s killing as a “crime of opportunity”, and that no murder had been committed at UGA in almost 30 years; a gap filled by the open border policy of Democrat President Joseph Biden, Homeland Secretary Alejandro Mayorkas and chain of Democrat District Attorney’s who let the perpetrator run free.

The murder has international news, generating extensive media attention — though not nearly as much as the George Floyd tragedy and the Black Lives Matter zietgeist — sparking debate over illegal immigration in United States after U.S. Immigration and Customs Enforcement (ICE) confirmed that Ibarra is a Venezuelan illegal immigrant who is not a U.S. citizen and was caught crossing the border but released back into the United States

Jose Antonio Ibarra, a 26-year-old Venezuelan citizen who entered the US illegally, was arrested by UGA police and has been charged with felony murder, false imprisonment, and kidnapping.[4] Ibarra lived about 1 mile (1.6 km) from the area where Riley’s body was found..

European leaders are indifferent to the rape and murder of their young women by migrant men also:


But what is government itself but the greatest of all reflections on human nature?  If men were angels, no government would be necessary.  If angels were to govern men, neither external nor internal controls on government would be necessary.  In framing a government which is to be administered by men over men, the great difficulty lies in this:  you must first enable the government to control control the governed; and in the next place oblige it to control itself.”James Madison, Federalist 51

Relevant Federal Executive & Legislative Committees

House of Representatives: Committee on Education & the Workforce

Senate: Committee on Health, Education, Labor and Pensions 

SCOTUS: West Virginia, et al. v. Environmental Protection Agency

United States District Court, Michigan | Martin Luther King Jr. Elementary School et al. v Ann Arbor School District Board


H.R. 305: One School, One Nurse Act of 2023

H.R. 6078: GROWTH Act of 2023

H.R. 3425: To amend the National Agricultural Research, Extension, and Teaching Policy Act of 1977 to authorize capacity building grants for community

H.R. 221: Expand Pell Grant eligibility to certain trade schools

H.R. 193: Teach Relevant Apprenticeships to Drive Economic Success Act

H.R. 202: States’ Education Reclamation Act

H.R. 302: Energy Cybersecurity University Leadership Act of 2023

The University Campus As A Designed Work and an Artefact of Cultural Heritage

Energy 300

May 8, 2024
mike@standardsmichigan.com

No Comments

Sie strahlt vor Freude über ihre Auszeichnung – TH-Alumna Melanie Klaus. Für ihre Bachelorarbeit im Bereich Erneuerbare Energien wurde sie vom Solarenergieförderverein Bayern geehrt. In ihrer Bachelorarbeit im Studiengang Elektro- und Informationstechnik untersuchte sie das Zusammenspiel von Wind- und Solarenergie und den Nutzen, der sich hieraus für die regenerative Energieerzeugung erzielen lässt. Untersucht wurde also die Nutzung der natürlichen Kombination von Wind und Sonne für die Energieerzeugung. Um die Rentabilität dieser Einspeisekombination zu ermitteln, hat Melanie Klaus ein Software-Tool entwickelt, welches zur Planung und Simulation abgestimmter Photovoltaik-Wind-Kombinationen dient und bereits für die Errichtung einer Photovoltaik-Anlage zu einem Windpark eingesetzt wird.

Starting 2023 we break down our coverage of education community energy codes and standards into two tranches:

Energy 200: Codes and standards for building premise energy systems.  (Electrical, heating and cooling of the building envelope)

Energy 300: Codes and standards that support the energy systems required for information and communication technology

21 March 2024

Energy 400: Codes and standards for energy systems between campus buildings.  (District energy systems including interdependence with electrical and water supply)

A different “flavor of money” runs through each of these domains and this condition is reflected in best practice discovery and promulgation.  Energy 200 is less informed by tax-free (bonded) money than Energy 400 titles.

Some titles cover safety and sustainability in both interior and exterior energy domains so we simply list them below:

ASME A13.1 – 20XX, Scheme for the Identification of Piping Systems | Consultation closes 6/20/2023

ASME Boiler Pressure Vessel Code

ASME BPVC Codes & Standards Errata and Notices

ASHRAE International 90.1 — Energy Standard for Buildings Except Low-Rise Residential Buildings

Data Center Operations & Maintenance

2018 International Green Construction Code® Powered by Standard 189.1-2017

NFPA 90 Building Energy Code

NFPA 855 Standard for the Installation of Stationary Energy Storage Systems

IEEE Electrical energy technical literature

ASTM Energy & Utilities Overview

Underwriters Laboratories Energy and Utilities

There are other ad hoc and open-source consortia that occupy at least a niche in this domain.  All of the fifty United States and the Washington DC-based US Federal Government throw off public consultations routinely and, of course, a great deal of faculty interest lies in research funding.

Please join our daily colloquia using the login credentials at the upper right of our home page.

References: Energy 400

More

United States Department of Energy

International Energy Agency World Energy Outlook 2022

International Standardization Organization

ISO/TC 192 Gas Turbines

Energy and heat transfer engineering in general

Economics of Energy, Volume: 4.9 Article: 48 , James L. Sweeney, Stanford University

Global Warming: Scam, Fraud, or Hoax?, Douglas Allchin, The American Biology Teacher (2015) 77 (4): 309–313.

Helmholtz and the Conservation of Energy, By Kenneth L. Caneva, MIT Press

International District Energy Association Campus Energy 2023 Conference: February 29-March 2 (Grapevine Texas)

NRG Provides Strategic Update and Announces New Capital Allocation Framework at 2023 Investor Day

Evaluation of European District Heating Systems for Application to Army Installations in the United States

Gallery: Other Ways of Knowing Climate Change

Allston District Energy

Campus Bulk Electrical Distribution

Interdependent Water & Electricity Networks

Interoperability of Inverter-Based Resources

Gallery: Campus Steam Tunnels

Electrical Resource Adequacy

 

From our video archive:

Rightsizing Electrical Power Systems

May 8, 2024
mike@standardsmichigan.com
, , ,
No Comments

Standards Michigan, spun-off in 2016 from the original University of Michigan Business & Finance Operation, has peppered NFPA 70 technical committees writing the 2016-2026 National Electric Code with proposals to reduce the size of building premise feeder infrastructure; accommodating the improvements made in illumination and rotating machinery energy conservation since the 1980’s (variable frequency drives, LED lighting, controls, etc.)

These proposals are routinely voted down in 12-20 member committees representing manufacturers (primarily) though local inspection authorities are complicit in overbuilding electric services because they “bill by the service panel ampere rating”.  In other words, when a municipality can charge a higher inspection fee for a 1200 ampere panel, what incentive is there to support changes to the NEC that takes that inspection fee down to 400 amperes?

The energy conservation that would result from the acceptance of our proposals into the NEC are related to the following: reduced step down transformer sizes, reduced wire and conduit sizes, reduced panelboard sizes, reduced electric room cooling systems — including the HVAC cooling systems and the ceiling plenum sheet metal carrying the waste heat away.   Up to 20 percent energy savings is in play here and all the experts around the table know it.   So much for the economic footprint of the largest non-residential building construction market in the United States — about $120 billion annually.

The market incumbents are complicit in ignoring energy conservation opportunity.  To paraphrase one of Mike Anthony’s colleagues representing electrical equipment manufacturers:

“You’re right Mike, but I am getting paid to vote against you.”

NFPA Electrical Division knows it, too.

University of Michigan

 

Rightsizing Commercial Electrical Power Systems: Review of a New Exception in NEC Section 220.12

Michael A. AnthonyJames R. Harvey

University of Michigan, Ann Arbor

Thomas L. Harman

University of Houston, Clear Lake, Texas

For decades, application of National Electrical Code (NEC) rules for sizing services, feeders and branch circuits has resulted in unused capacity in almost all occupancy classes. US Department of Energy data compiled in 1999 indicates average load on building transformers between 10 and 25 percent. More recent data gathered by the educational facilities industry has verified this claim. Recognizing that aggressive energy codes are driving energy consumption lower, and that larger than necessary transformers create larger than necessary flash hazard, the 2014 NEC will provide an exception in Section 220.12 that will permit designers to reduce transformer kVA ratings and all related components of the power delivery system. This is a conservative, incremental step in the direction of reduced load density that is limited to lighting systems. More study of feeder and branch circuit loading is necessary to inform discussion about circuit design methods in future revisions of the NEC.

CLICK HERE for complete paper

University of Houston

2026 National Electrical Code Workspace

International Energy Conservation Code

May 8, 2024
mike@standardsmichigan.com
No Comments

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

2024 GROUP A PROPOSED CHANGES TO THE I-CODES

Shouldn’t energy conservation measures be determined by market forces rather than building construction regulations? 

Energy codes in the United States are adopted and enforced at the state level, and the stringency of the energy codes can vary widely from state to state.  For example, as of September 2021, four states (Alabama, Mississippi, South Carolina, and West Virginia) had not adopted statewide energy codes at all, according to the Building Codes Assistance Project. Other states may have adopted energy codes but have not updated them to the latest version, which could be less stringent than more recent versions.

We do not spend too many resources challenging the zietgeist.  Engineers, by nature, seek to do more with less but it is worth reminding our colleagues that energy conservation practices vary widely around the globe and not every nation supports what amounts to an energy police state.

“The Conquest of Energy” / José Chávez Morado / Universidad Nacional Autónoma de México

The International Energy Conservation Code is a model building code developed by the International Code Council for incorporation by reference into state and local energy conservation legislation.  Free access to the current edition is linked below:

2021 International Energy Conservation Code

Sell Sheet: Leading the Way to Energy Efficiency

2024 International Energy Conservation Code Update: Appeals Deadline Extended

Apart from product prescriptive passages IECC is a largely a performance code which draws its inspiration from other energy-related catalogs developed by United States standards developers; notably ASHRAE International.  Several accessory titles supporting the current 2021 edition which address energy efficiency on several fronts including cost, energy usage, use of natural resources and the impact of energy usage on the environment are linked below:

Related Titles

Many of the ideas in play can be tracked in the transcripts linked below:

Complete Monograph: 2022 Group B Proposed Changes

Complete Monograph: 2022 Group B Public Comment Agenda

Note the pre-occupation with products such as insulation, fenestration, power outlets and lighting — reflecting the financial support of energy activists advocating on behalf of manufacturers who tend build the cost of their advocacy in the price of their product.

A commonly overlooked energy conservation measure is reducing standby power consumption, also known as “vampire power.” Many electronic devices, such as televisions, computers, and chargers, consume energy even when they are not actively being used but are still plugged in. This standby power can account for up to 10% of a building’s energy consumption.

While our focus tends to be on the commercial facility docket, we keep an eye on the residential docket because, a)  many colleges and universities own and operate square-footage on the periphery of their campuses that is classified as residential, b) many student rental houses are obviously classified as residential and we want property owners to be able to afford reasonable energy conservation measures for the houses they rent to students.*

From previous posts we explained we summarized our priorities for the Group B cycle and the IECC in particular:

  • Education facilities as storm shelters
  • Laboratory ventilation
  • Classroom lighting
  • Expansion of lighting controls
  • Expansion of receptacle controls
  • Expansion of electrical power system design requirements above beyond National Electrical Code minimums.

We encourage our colleagues in energy enterprises in education communities to participate directly in the ICC Code Development Process.*

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

The IECC is a standing item on our periodic Energy 200, Power, Mechanical and Hello World! colloquia.  See our CALENDAR for the next online meeting; open to everyone.

University of Michigan

Issue: [Various]

Category: Architectural, Facility Asset Management, Space Planning

Colleagues: Mike Anthony, Jim Harvey, Jack Janveja, Richard Robben, Larry Spielvogel


* More:

Quadrivium: Spring

May 8, 2024
mike@standardsmichigan.com

No Comments

“…O chestnut tree;, great rooted blossomer,
Are you the leaf, the blossom or the bold?
O body swayed to music, O brightening glance,
How can we know the dancer from the dance?”

Among Schoolchildren, 1933 William Butler Yeats

The Watson Institute Pennsylvania

United States Patent and Trademark Office: News and Updates

American National Standards Institute: Standards Action

International Electrotechnical Commission

International Organization for Standardization

International Telecommunication Union

More LIVE Campus Cameras

2026 National Electrical Code Workspace

2028 National Electrical Safety Code Workspace

Spring Week 19 | May 6 – May 12

Standards May: Sport

“The Earthly Paradise with the Fall of Adam and Eve” 1615 | Peter Paul Rubens

We sweep through the world’s three major time zones; updating our understanding of the literature at the technical foundation of education community safety and sustainability in those time zones 24 times per day. We generally eschew “over-coding” web pages to sustain speed, revision cadence and richness of content as peak priority.  We do not provide a search facility because of copyrights of publishers and time sensitivity of almost everything we do.

Cognitive Science: An Introduction to the Study of Mind

Our daily colloquia are typically doing sessions; with non-USA titles receiving priority until 16:00 UTC and all other titles thereafter.  We assume policy objectives are established (Safer-Simpler-Lower-Cost, Longer-Lasting).   Because we necessarily get into the weeds, and because much of the content is time-sensitive and copyright protected, we usually schedule a separate time slot to hammer on technical specifics so that our response to consultations are meaningful and contribute to the goals of the standards developing organization and to the goals of stewards of education community real assets.

1. Leviathan.  We track noteworthy legislative proposals in the United States 118th Congress.  Not many deal specifically with education community real assets since the relevant legislation is already under administrative control of various Executive Branch Departments such as the Department of Education.

We do not advocate in legislative activity at any level.   We respond to public consultations but there it ends.

We track federal legislative action because it provides a stroboscopic view of the moment — the “national conversation”– in communities that are simultaneously a business and a culture.  Even though more than 90 percent of such proposals are at the mercy of the party leadership the process does enlighten the strengths and weakness of a governance system run entirely through the counties on the periphery of Washington D.C.  It is impossible to solve technical problems in facilities without sensitivity to the zietgeist that has accelerated in education communities everywhere.

 

North Dakota

We typically post one federal and one state level consultation or action every day for at least one of the 50-states — in the lower right corner of our home page when most education communities in the United States have begun a new work day.  Examples, irregularly linked:

U.S. Department of Commerce Bureau of Industry and Security: Public consultation on US standards system rule (November 8)

2National Institute of Standards and Technology (NIST)

Post-Quantum Cryptography Practice Guide (June 8)

Public Consultation on Semiconductor Manufacturing (November 28)

NIST Awards Funding to 5 Universities to Advance Standards Education

NIST Center for Neutron Research: 2022 Outstanding Student Poster Presentation

Commerce Levels Playing Field to Support U.S. Stakeholder Participation in International Standards Setting Activities

NIST Report Outlines Strategic Opportunities for U.S. Semiconductor Manufacturing

Occupational exposure and indoor environmental quality evaluation from operating multiple desktop 3D printers in an office environment within a library.

3ANSI ISO Business  (Many of these projects are normally covered during our Hello World! colloquia

ANSI April 2023 Public Policy Update

ANSI January Report 2023 on ISO, IEC & ITU Work Items

ISO Standardization Foresight Framework | Trend Report 2022

New ISO Subcommittee ISO/TC 197/SC 1 – Hydrogen at Scale and Horizontal Energy Systems

New ISO Subcommittee ISO/TC 67/SC 10 – Enhanced oil recovery

Update: Certification+Degree (C+D) pathways in information technology (IT) and health sciences.

2023 Student Paper Competition Theme: Standards Supporting United Nations Sustainable Development Goals.  Submissions due 2 June 2023

Standards Coordination Office | USA WTO TBT Enquiry Point 

USNC/IEC

Consultations (Some posted with IEEE Education & Healthcare Facilities Committee) | Direct access to primary workspace

4. Fast Forward  

Looking Ahead: 2024

5. Rewind

Retrodiction

Lights Out

6. Corrigenda


International Standardization Organization Week Date

 

Readings

Glossary: Education

The College Idea: Andrew Delbanco

Energy Standard for *Sites* and Buildings

May 8, 2024
mike@standardsmichigan.com
,
No Comments

ANSI Standards Action Weekly Edition

 

The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) is an ANSI-accredited continuous-maintenance standards developer (a major contributor to what we call a regulatory product development “stream”).   Continuous maintenance means that changes to its consensus products can change in as little as 30 days so it is wise to keep pace.

Among the leading titles in its catalog is ASHRAE 90.1 Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings.  Standard 90.1 has been a benchmark for commercial building energy codes in the United States and a key basis for codes and standards around the world for more than 35 years.  Free access to ASHRAE 90.1 version is available at the link below:

READ ONLY Version of 2022 ASHRAE 90.1

Redlines are released at a fairly brisk pace — with 30 to 45 day consultation periods.  A related title — ASHRAE 189.1 Standard for the Design of High Performance Green Buildings — first published in 2009 and far more prescriptive in its scope heavily  references parent title 90.1 so we usually them as a pair because 189.1 makes a market for green building conformance enterprises. Note the “extreme prescriptiveness” (our term of art) in 189.1 which has the practical effect of legislating engineering judgement, in our view.

25 January 2023: Newly Released ASHRAE 90.1-2022 Includes Expanded Scope For Building Sites

ASHRAE committees post their redlines at the link below:

Online Standards Actions & Public Review Drafts

At least two energy/building enclosure related redlines are open for consultation through May 27th.  

Education industry facility managers, energy conservation workgroups, sustainability officers, electric shop foreman, electricians and front-line maintenance professionals who change lighting fixtures, maintain environmental air systems are encouraged to participate directly in the ASHRAE consensus standard development process.

We also maintain ASHRAE best practice titles as standing items on our Mechanical, Water, Energy and Illumination colloquia.  See our CALENDAR for the next online meeting; open to everyone.

Issue: [Various]

Category: Mechanical, Electrical, Energy Conservation, Facility Asset Management, US Department of Energy, #SmartCampus

Colleagues: Mike Anthony, Larry Spielvogel, Richard Robben

Under Construction:  ASHRAE WORKSPACE


More

The fundamental concept in social science is Power, in the same sense in which Energy is the fundamental concept in physics. - Bertrand Russell

ANSI/ASHRAE/IES 90.1-2019: Energy Standard For Buildings

ARCHIVE 2002-2016 / ASHRAE 90.1 ENERGY STANDARD FOR BUILDINGS

US Department of Energy Building Energy Codes Program

ASHRAE Guideline 0 The Commissioning Process

Why Software is Eating the World

2028 National Electrical Safety Code

May 8, 2024
mike@standardsmichigan.com
,
No Comments

Project Introduction for the 2028 Edition (2:39 minutes)

Changes proposals for the Edition will be received until 15 May 2024

Project Workspace: Update Data Tables in IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

Painting by Linda Kortesoja Klenczar

Federal Energy Regulatory Commission: Electrical Resource Adequacy

Relevant Research

NARUC Position on NFPA (NEC) and IEEE (NESC) Harmonization

The standard of care for electrical safety at high and low voltage is set by both the NEC and the NESC. There are gaps, however (or, at best “gray areas”) — the result of two technical cultures: utility power culture and building fire safety culture. There is also tradition. Local system conditions and local adaptation of regulations vary. Where there is a gap; the more rigorous requirement should govern safety of the public and workers.

The 2023 National Electrical Safety Code (NESC)– an IEEE title often mistaken for NFPA’s National Electrical Code (NEC) — was released for public use about six months ago; its normal 5-year revision cycle interrupted by the circumstances of the pandemic.   Compared with the copy cost of the NEC, the NESC is pricey, though appropriate for its target market — the electric utility industry.  Because the 2023 revision has not been effectively “field tested” almost all of the available support literature is, effectively, “sell sheets” for pay-for seminars and written by authors presenting themselves as experts for the battalions of litigators supporting the US utility industry.  Without the ability to sell the NESC to prospective “insiders” the NESC would not likely be commercial prospect for IEEE.   As the lawsuits and violations and conformance interests make their mark in the fullness of time; we shall see the 2023 NESC “at work”.

IEEE Standards Association: Additional Information, Articles, Tools, and Resources Related to the NESC

Office of the President: Economic Benefits of Increasing Electric Grid Resilience to Weather Outages

Research Tracks:

NARUC Resolution Urging Collaboration Between the National Electrical Safety Code and the National Electrical Code

  1. Smart Grid Technologies:
    • Investigating advanced technologies to enhance the efficiency, reliability, and sustainability of power grids.
  2. Energy Storage Systems:
    • Researching and developing new energy storage technologies to improve grid stability and accommodate intermittent renewable energy sources.
  3. Distributed Generation Integration:
    • Studying methods to seamlessly integrate distributed energy resources such as solar panels and wind turbines into the existing power grid.
  4. Grid Resilience and Security:
    • Exploring technologies and strategies to enhance the resilience of power grids against cyber-attacks, natural disasters, and other threats.
  5. Demand Response Systems:
  6. Advanced Sensors and Monitoring:
    • Developing new sensor technologies and monitoring systems to enhance grid visibility, detect faults, and enable predictive maintenance.
  7. Power Quality and Reliability:
    • Studying methods to improve power quality, reduce voltage fluctuations, and enhance overall grid reliability.
  8. Integration of Electric Vehicles (EVs):
    • Researching the impact of widespread electric vehicle adoption on the grid and developing smart charging infrastructure.
  9. Grid Automation and Control:
    • Exploring advanced automation and control strategies to optimize grid operations, manage congestion, and improve overall system efficiency.
  10. Campus Distribution Grid Selling and Buying 

Relevant Technical Literature

IEC 60050 International Electrotechnical Vocabulary (IEV) – Part 601: Generation, transmission and distribution of electricity | April 16

Recommended Practice for Battery Management Systems in Energy Storage Applications | Comments Due March 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

 

Standards:

Presentation | FERC-NERC-Regional Entity Joint Inquiry Into Winter Storm Elliott

IEEE Guide for Joint Use of Utility Poles with Wireline and/or Wireless Facilities

NESC Rule 250B and Reliability Based Design

NESC Requirements (Strength and Loading)

Engineering Analysis of Possible Effects of 2017 NESC Change Proposal to Remove 60′ Exemption

National Electrical Safety Code Workspace


Joint Use of Electric Power Transmission & Distribution Facilities and Equipment

A Framework to Quantify the Value of Operational Resilience for Electric Power Distribution Systems

August 14, 2003 Power Outage at the University of Michigan

Technologies for Interoperability in Microgrids for Energy Access


National Electrical Safety Code: Revision Cycles 1993 through 2023

 


February 24, 2023

The new code goes into effect 1 February 2023, but is now available for access on IEEE Xplore! Produced exclusively by IEEE, the National Electrical Safety Code (NESC) specifies best practices for the safety of electric supply and communication utility systems at both public and private utilities.  The bibliography is expanding rapidly:

NESC 2023: Introduction to the National Electrical Safety Code

NESC 2023: Rule Changes

NESC 2023Safety Rules for Installation and Maintenance of Overhead Electric Supply

NESC 2023Safety Rules for the Installation and Maintenance of Underground Electric Supply and Communication Lines

NESC 2023: Rules for Installation and Maintenance of Electric Supply Stations

IEEE Digital Library

Grid Edge Visibility: Gaps and a road map


October 31, 2022

The IEEE NESC technical committee has released a “fast track” review of proposed changes to fault-managed power system best practice:

CP5605 Provides a definition of new Fault Managed Power System (FMPS) circuits used for the powering of
communications equipment clearly defines what constitutes a FMPS circuit for the purposes of application of the NESC
Rules of 224 and 344
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXtAAAAADhMnPs

CP5606 Provides new definitions of Communication Lines to help ensure that Fault Managed Power Systems (FMPS)
circuits used for the exclusive powering of communications equipment are clearly identified as communications lines
and makes an explicit connection to Rule 224B where the applicable rules for such powering circuits are found.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXpAAAAAFfvWIs

CP5607 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXuAAAAAEEt3p4

CP5608 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXvAAAAAGrzyeI

We refer them to the IEEE Education & Healthcare Facilities Committee for further action, if any.

 


August 5, 2022

We collaborate closely with the IEEE Education & Healthcare Facilities Committee (IEEE E&H) to negotiate the standard of care for power security on the #SmartCampus  since many campus power systems are larger than publicly regulated utilities.  Even when they are smaller, the guidance in building the premise wiring system — whether the premise is within a building, outside the building (in which the entire geography of the campus footprint is the premise), is inspired by IEEE Standards Association administrated technical committees.

Northeast Community College | Norfolk, Nebraska

Today we begin a list of noteworthy changes to be understood in the next few Power colloquia.  See our CALENDAR for the next online meeting.

  1. New rules 190 through 195 cover photovoltaic generating stations.  Rule 116c adds an exception for short lengths of insulated power cables and short-circuit protection if the situation involves fewer than 1,000 volts.
  2. Rule 320B has been revised to clarify separations that apply to communications and supply in different conduit systems.
  3. Table 410-4 is based on the latest arc flash testing on live-front transformers.
  4. Rule 092A adds an exception allowing protection, control, and safety battery systems to not be grounded.
  5. Rules 234 B1, C1, D1 were revised to better present vertical and horizontal wind clearances, and to coordinate requirements with the new Table 234-7.
  6. Rule 120A was revised to provide correction factors for clearances on higher elevations.
  7. Table 253-1 has been revised to reduce the load factor for fiber-reinforced polymer components under wire tension—including dead ends—for Grade C construction.
  8. Rule 410A now requires a specific radio-frequency safety program for employees who might be exposed.
  9. In the Clearances section, as well as in the specification of the Grade of Construction in Table 242-1, the Code further clarifies the use of non-hazardous fiber optic cables as telecom providers continue to expand their networks.
  10. Revisions in the Strength & Loading sections include modified Rule 250C, which addresses extreme wind loading for overhead lines. Two wind maps are now provided instead of the previous single one. A map for Grade B, the highest grade of construction, with a Mean Recurrence Interval (MRI) of 100 years (corresponding to a one percent annual probability of occurrence) is provided in place of the previous 50–90-year MRI map. For Grade C construction, a separate 50-year MRI (two percent annual probability of occurrence) map is now provided. In the previous Code, a factor was applied to the 50–90-year MRI map for application to Grade C.
  11. Changes were also made to the method of determining the corresponding wind loads, consistent with the latest engineering practices as an example of a Code revision focused on public safety, the ground end of all anchor guys adjacent to regularly traveled pedestrian thoroughfares, such as sidewalks, and similar places where people can be found must include a substantial and conspicuous marker to help prevent accidents. The previous Code did not require the marking of every such anchor guy.
  12. Significant revisions were made in Section 14 covering batteries. Previous editions of the code were based on lead-acid technology and batteries only used for backup power. The 2023 Code incorporates the new battery technologies and addresses energy storage and backup power.
  13. A new Section 19 of the code covers photovoltaic generating stations, with sections addressing general codes, location, grounding configurations, vegetation management, DC overcurrent protection, and DC conductors. These new rules accommodate large-scale solar power projects.
  14. In the Clearances section, all rules for wireless antenna structures have been consolidated in the equipment section (Rule 238 and 239), which makes the Code more user-friendly.
  15. A new subcommittee was created focusing on generating stations, with the original subcommittee continuing to address substations.
  16. A working group is investigating Fault Managed Power Systems (FMPS) cables as the technology may be used for 5G networks. The team is looking at possible impacts, including clearances and work rules.

 


February 18, 2021

 

Several proposals recommending improvements to the 2017 National Electrical Safety Code (NESC) were submitted to the IEEE subcommittees drafting the 2022 revision of the NESC.   Some of the proposals deal with coordination with the National Electrical Code — which is now in its 2023 revision cycle.  Keep in mind that that NESC is revised every 5 years at the moment; the NEC is revised every 3 years.

The original University of Michigan standards advocacy enterprise has been active in writing the NESC since the 2012 edition and set up a workspace for use by electrical professionals in the education industry.   We will be using this workspace as the 2022 NESC continues along its developmental path:

IEEE 2022 NESC Workspace

The revision schedule — also revised in response to the circumstances of the pandemic — is linked below::

NESC 2023 Edition Revision Schedule*

 

The NESC is a standing item on the 4-times monthly teleconferences of the IEEE Education & Healthcare Facilities committee.  The next online meeting is shown on the top menu of the IEEE E&H website:

IEEE E&H Committee

We have a copy of the first draft of the 2023 NESC and welcome anyone to join us for an online examination during any of Power & ICT teleconferences.  See our CALENDAR for the next online meeting.

Business unit leaders, facility managers and electrical engineers working in the education facilities industry may be interested in the campus power system reliability database.   Forced outages on large research campuses, for example, can have enterprise interruption cost of $100,000 to $1,000,000 per minute.    The campus power system forced outage database discriminates between forced outages attributed to public utility interruptions and forced outages attributed to the university-owned power system.   The E&H committee will convey some of the discipline applied by the IEEE 1366 technical committee into its study of campus power systems and, ultimately, setting a benchmark for the standard of care for large university power systems.

 

 

* The IEEE changed the nominal date of the next edition; likely owed to pandemic-related slowdown typical for most standards developing organizations.

Issue: [16-67]

Contact: Mike Anthony, Robert G. Arno, Lorne Clark, Nehad El-Sharif, Jim Harvey, Kane Howard, Joe Weber, Guiseppe Parise, Jim Murphy

Category: Electrical, Energy Conservation & Management, Occupational Safety

ARCHIVE: University of Michigan Advocacy in the NESC 2007 – 2017


LEARN MORE:

P1366 – Guide for Electric Power Distribution Reliability Indices 

University Design Guidelines that reference the National Electrical Safety Code

 

Electrical Resource Adequacy

May 8, 2024
mike@standardsmichigan.com
, ,
No Comments

“When buying and selling are controlled by legislation,
the first things to be bought and sold are legislators.”
P.J. O’Rourke

Predictive Reliability Analysis of Power Distribution Systems Considering the Effects of Seasonal Factors on Outage Data Using Weibull Analysis Combined With Polynomial Regression


February 2024 Highlights 

Failure Rate Prediction Model of Substation Equipment Based on Weibull Distribution and Time Series Analysis

January 2024 Highlights



Transmission Planning Using a Reliability Criterion

Readings / The Administrative State

In power system engineering, availability and reliability are two important concepts, but they refer to different aspects of the system’s performance.

Reliability:

  • Reliability refers to the ability of a power system to perform its intended function without failure for a specified period under given operating conditions. It is essentially a measure of how dependable the system is.
  • Reliability metrics often include indices such as the frequency and duration of outages, failure rates, mean time between failures (MTBF), and similar measures.
  • Reliability analysis focuses on identifying potential failure modes, predicting failure probabilities, and implementing measures to mitigate risks and improve system resilience.Availability:
  • Availability, on the other hand, refers to the proportion of time that a power system is operational and able to deliver power when needed, considering both scheduled and unscheduled downtime.
  • Availability is influenced by factors such as maintenance schedules, repair times, and system design redundancies.
  • Availability is typically expressed as a percentage and can be calculated using the ratio of the uptime to the total time (uptime plus downtime).
  • Availability analysis aims to maximize the operational readiness of the system by minimizing downtime and optimizing maintenance strategies.

Reliability focuses on the likelihood of failure and the ability of the system to sustain operations over time, while availability concerns the actual uptime and downtime of the system, reflecting its readiness to deliver power when required. Both concepts are crucial for assessing and improving the performance of power systems, but they address different aspects of system behavior.

 

November 2023 Highlights | FERC insight | Volume 10

Determining System and Subsystem Availability Requirements: Resource Planning and Evaluation

Comment: These 1-hour sessions tend to be administrative in substance, meeting the minimum requirements of the Sunshine Act. This meeting was no exception. Access to the substance of the docket is linked here.

Noteworthy: Research into the natural gas supply following Winter Storm Elliot.

 


August 14, 2003


 UPDATED POLICIES ON U.S. DECARBONIZATION AND TECHNOLOGY TRANSITIONS


June 15:FERC Finalizes Plans to Boost Grid Reliability in Extreme Weather Conditions

On Monday June 13th, Federal Energy Regulatory Commission commissioners informed the House Committee on Energy and Commerce that the “environmental justice” agenda prohibits reliable dispatchable electric power needed for national power security. One megawatt of natural gas generation does not equal one megawatt of renewable generation. The minority party on the committee — the oldest standing legislative committee in the House of Representatives (established 1795) — appears indifferent to the reliability consequences of its policy.

Joint Federal-State Task Force on Electric Transmission

“Our nation’s continued energy transition requires the efficient development of new transmission infrastructure. Federal and state regulators must address numerous transmission-related issues, including how to plan and pay for new transmission infrastructure and how to navigate shared federal-state regulatory authority and processes. As a result, the time is ripe for greater federal-state coordination and cooperation.”












 

Bibliography:

Natural Gas Act of 1938

Natural Gas Policy Act of 1978

Glossary of Terms Used in NERC Reliability Standards

The Major Questions Doctrine and Transmission Planning Reform

As utilities spend billions on transmission, support builds for independent monitoring

States press FERC for independent monitors on transmission planning, spending as Southern Co. balks

Related:

Homeland Power Security

At the July 20th meeting of the Federal Energy Regulatory Commission Tristan Kessler explained the technical basis for a Draft Final Rule for Improvements to Generator Interconnection Procedures and Agreements, On August 16th the Commission posted a video reflecting changes in national energy policy since August 14, 2003; the largest blackout in American history.

NESC & NEC Cross-Code Correlation

May 8, 2024
mike@standardsmichigan.com

No Comments

Statement from NARUC During its Summer 2018 Committee Meetings

IEEE Education & Healthcare Facilities Committee

Representative State Level Service Quality Standards

MI Power Grid

Relevant Research


PROCESS, PROCEDURES & SCHEDULE

Meeting Notes in red

Loss of electric power and internet service happens more frequently and poses at least an equal — if not greater threat — to public safety.  So why does neither the National Electrical Code or the National Electrical Safety Code integrate reliability into their core requirements?  Reliability requirements appear in a network of related documents, either referenced, or incorporated by reference; sometimes automatically, sometimes not.

NESC Main Committee Membership: Page xii

Apart from the IEEE as the accredited standards developer, there are no “pure non-government user-interests” on this committee; although ANSI’s Essential Requirements for balance of interests provides highly nuanced interpretation.  The Classifications on Page xiii represents due diligence on meeting balance of interest requirements.

In our case, we are one of many large universities that usually own district energy plants that both generate and purchase generate electric power (as sometimes provide var support to utilities when necessary; as during the August 2003 North American outage).  For University of Michigan, for example, has about 20 service points at 4.8 – 120 kV.  Its Central Power Plant is the largest cogeneration plant on the DTE system.

Contents: Page xxviii | PDF Page 29

Absence of internet service is at least as much a hazard, and more frequent, than downed wires.   Is there a standards solution?  Consideration of interoperability of internet service power supported on utility poles  should track in the next revision.

No mention of any reliability related IEEE reliability standards in the present edition.  Why is this?

Section 2: Definitions of Special Terms | PDF Page 40

In the 2023 Handbook, the term “reliability” shows up 34 times.

availability (from Bob Arno’s IEEE 3006-series and IEEE 493 Gold Book revision)

reliability (Bob Arno)

Section 3: Reference

NFPA 70®, National Electrical Code® (NEC®). [Rules 011B4 NOTE, 099C NOTE 1, and 127

IEEE Std 4™-1995, IEEE Standard Techniques for High-Voltage Testing. [Table 410-2 and Table 410-3]
IEEE Std 516™-2009, IEEE Guide for Maintenance Methods on Energized Power-Lines. [Rules 441A4
NOTE 2, 446B1, and 446D3 NOTE, and Table 441-5, Footnote 4]
IEEE Std 1427™-2006, IEEE Guide for Recommended Electrical Clearances and Insulation Levels in
Air-Insulated Electrical Power Substations. [Rule 124A1 NOTE, Table 124-1, 176 NOTE, and 177 NOTE]
IEEE Std 1584™-2002, IEEE Guide for Performing Arc Flash Hazard Calculations. [Table 410-1,
Footnotes 1, 3, 6, and 14]
IEEE Std C62.82.1™-2010, IEEE Standard for Insulation Coordination—Definitions, Principles, and Rules.
[Table 124-1 Footnote 5]

Add references to Gold Book, 1386, etc.

Section 11: Protective arrangements in electric supply stations

Section 12: Installation and maintenance of equipment

 

Part 2. Safety Rules for the Installation and Maintenance of Overhead Electric Supply and Communication Line | Page 72

Section 22. Relations between various classes of lines and equipment | Page 80

222. Joint use of structures | Page 82

Where the practice of joint use is mutually agreed upon by the affected utilities, facilities shall be subject to the appropriate grade of construction specified in Section 24. Joint use of structures should be
considered for circuits along highways, roads, streets, and alleys. The choice between joint use of structures and separate lines shall be determined through cooperative consideration with other joint
users of all the factors involved, including the character of circuits, worker safety, the total number and weight of conductors, tree conditions, number and location of branches and service drops, structure
conflicts, availability of right-of-way, etc.

Reliability considerations for sustaining internet service when power supply is absent. 

Part 3. Safety Rules for the Installation and Maintenance of Underground Electric Supply and Communication Lines | Page 220

311. Installation and maintenance

A. Persons responsible for underground facilities shall be able to indicate the location of their facilities.
B. Reasonable advance notice should be given to owners or operators of other proximate facilities that
may be adversely affected by new construction or changes in existing facilities.
C. For emergency installations, supply and communication cables may be laid directly on grade if the
cables do not unreasonably obstruct pedestrian or vehicular traffic and either:

1. The cables are covered, enclosed, or otherwise protected, or
2. The locations of the cables are conspicuous.
Supply cables operating above 600 V shall meet either Rule 230C or 350B.
NOTE: See Rules 014B2 and 230A2d.

Part 4. Work Rules for the Operation of Electric Supply and Communications Lines and Equipment | PDF Page 289


The word “reliability” appears only three times.  Should it track in the NESC or should it track in individual state requirements.  So neither the NEC nor the NESC couples closely with power and communication reliability; despite the enormity and speed of research.

 

“Backup” Power Systems

May 7, 2024
mike@standardsmichigan.com

No Comments

Image Credit: Unknown

We use the term “backup” power system to convey the complexity of electrical power sources when the primary source is not used; either as a scheduled or an unscheduled event.   Best practice literature in this domain has been relatively stable, even though challenged by newer primary source of power technologies.   We are running our daily colloquium in parallel with the recurring 4 times monthly meetings of the IEEE Education & Healthcare Facilities Committee.   You are welcomed to join us with the login credentials at the upper right of our home page.

2026 National Electrical Code Workspace

2028 National Electrical Safety Code

Electrical Resource Adequacy

NESC & NEC Cross-Code Correlation

 

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content