The History of Elevators

Loading
loading...

The History of Elevators

August 21, 2024
mike@standardsmichigan.com
No Comments

https://upload.wikimedia.org/wikipedia/commons/8/8c/Colin_Campbell_Cooper%2C_Hudson_River_Waterfront%2C_N.Y.C.jpg

The first recorded public use of an elevator was in 1743, in a private residence in France. It was created by a French scientist and inventor named Louis-François Dauprat. However, this early elevator was not used for public transportation or in a commercial building.

The first practical passenger elevator was invented by Elisha Graves Otis, an American industrialist and inventor, in 1852.  The Otis elevator used a safety device known as a “safety brake” or “safety hoist,” which prevented the elevator from falling in case the hoisting cable broke at a five-story building in New York City in 1857, known as Haughwout Building.

This invention revolutionized vertical transportation, allowing for the construction of taller buildings and changing the way people live and work in urban areas.

Elevators & Lifts

“Elevator Man”

The earliest installation of a passenger elevator in a university building in the United States was at the Massachusetts Institute of Technology.  In 1861, Otis Brothers & Co., the company founded by Elisha Graves Otis, installed the first passenger elevator on a university campus in the Rogers Building at MIT. The Rogers Building was a three-story structure that housed laboratories, classrooms, and offices for faculty and students. The installation of the passenger elevator provided vertical transportation within the building, making it more convenient for people to move between floors.

This early installation marked an important milestone in the history of vertical transportation on college and university campuses, and it paved the way for the adoption of elevators in other educational institutions as they expanded in size and height over time.

 

Hayward Street Geothermal Cooling $20M

August 21, 2024
mike@standardsmichigan.com
,
No Comments

ACTION REQUEST: $20M

Leinweber Computer and Information Science

Leinweber Foundation Gift

Business & Finance: We Make Blue Go

Geothermal cooling plants have far fewer moving parts and thus pay for themselves by combining immediate energy savings, revenue from excess energy or services, government incentives, and long-term operational efficiency. “Classical” payback period depends on factors like the plant’s scale and available incentives through DTE Energy.

1. Energy Cost Savings

  • Reduced Operating Costs: Geothermal systems use the relatively constant temperature of the earth to provide heating and cooling, which can be much more energy-efficient than traditional HVAC systems. This efficiency leads to lower utility bills for the facility, resulting in significant cost savings over time.
  • Lower Maintenance Costs: Geothermal systems generally have fewer moving parts than conventional systems, leading to lower maintenance and repair costs.

2. Revenue Generation

  • Selling Excess Energy: In some cases, geothermal plants can produce more energy than needed for cooling. This excess energy can be sold back to the grid or used for other purposes, providing an additional revenue stream.
  • Leasing and Service Agreements: Some facilities enter into agreements with nearby buildings or industries to provide geothermal cooling services, generating income.

3. Government Incentives and Subsidies

  • Tax Credits and Rebates: Many governments offer financial incentives, such as tax credits, grants, and rebates, for the installation and operation of geothermal systems. These incentives can significantly reduce the upfront costs and improve the payback period.
  • Renewable Energy Certificates(RECs): In some regions, geothermal plants can earn RECs for generating renewable energy. These certificates can be sold to other companies to offset their carbon emissions, generating additional income.

4. Environmental and Social Benefits

  • Carbon Credits: By reducing greenhouse gas emissions compared to traditional systems, geothermal plants can earn carbon credits, which can be sold or traded in carbon markets.
  • Sustainability Branding: Businesses that use geothermal cooling can market themselves as environmentally friendly, potentially attracting more customers or tenants, which indirectly supports the plant’s financial viability.

5. Long-Term Investment

  • Long Lifespan: Geothermal systems typically have a long lifespan (20-50 years), allowing for a long-term return on investment. While the initial capital costs are high, the system’s durability and low operating costs contribute to a favorable payback over time.
  • Resilience Against Energy Price Volatility: Geothermal systems provide protection against fluctuating energy prices, offering stable and predictable costs, which is financially beneficial over the long term.

6. Financing Models

  • Power Purchase Agreements (PPAs): Some geothermal plants are financed through PPAs, where a third party finances the installation and the facility pays for the energy produced, typically at a lower rate than conventional energy sources.
  • Energy Service Companies (ESCOs): These companies can finance, install, and maintain geothermal systems, with the facility paying for the service over time, usually based on the energy savings achieved.

7. Scalability and Integration

  • Integration with Other Renewable Systems: Geothermal cooling can be part of a broader renewable energy strategy, integrating with solar or wind power to further enhance efficiency and reduce costs, improving the overall financial outlook.

Earth Energy Systems

Apricot Galettes

August 19, 2024
mike@standardsmichigan.com

No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

How to Make the Three Most Popular Milk Coffees

August 19, 2024
mike@standardsmichigan.com

No Comments

Coffs Harbour

Cowardice Is Killing The West

Australia

Engineering a Fair Future: Why we need to train unbiased AI

August 16, 2024
mike@standardsmichigan.com
, ,
No Comments

OpenAI was founded in 2015 by a group of technology luminaries, including Elon Musk, Sam Altman, Greg Brockman, Ilya Sutskever, John Schulman, and Wojciech Zaremba. The organization was created with the goal of developing advanced artificial intelligence technologies in a way that is safe and beneficial for humanity.  It is written in multiple programming languages, but the primary language used to build the model is Python but relies on a range of other software tools and frameworks, including TensorFlow and PyTorch for training and deploying the deep learning models, and various libraries for data preprocessing and postprocessing, such as spaCy, NLTK, and Transformers.

Since its founding, OpenAI has grown to become one of the world’s leading AI research organizations, with a team of hundreds of researchers and engineers working on a wide range of projects in areas such as natural language processing, robotics, computer vision, and more.  Much like humans, ChatGPT will likely struggle negotiating “bias”.  As of this posting it seems clear that the algorithm produces answers that are biased toward large central government; most likely the result of not having enough historical input about how a smaller central government is largely responsible for inventing it.

Software Engineering Ethics Education

print(“Python”)

Manifesto for Software Development

Haystack Observatory

August 16, 2024
mike@standardsmichigan.com
, ,
No Comments

 

 

 

 

 

 

 

 

 

 

 

The Haystack Observatory is a research facility primarily focused on radio astronomy, geodesy, and atmospheric science research.  Although WMBR and the Haystack Observatory are both associated with MIT, they serve distinct purposes; with WMBR focuses on providing a platform for student radio programming and community engagement in the Cambridge region.

 

 

The transmitter for student-run radio station, WMBR 88.1 FM, is located in the town of Belmont about 3 miles from campus; situated on a tower at 150 Pleasant Street in Belmont. This location allows WMBR’s signal to cover a significant portion of the greater Boston area, reaching listeners in Cambridge, Boston, and surrounding communities.

Stadio dei Marmi

August 15, 2024
mike@standardsmichigan.com

No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content