Evensong “How Do You Keep the Music Playing?”

Loading
loading...

door (n.)

January 9, 2025
mike@standardsmichigan.com

No Comments

ICC Group A Monograph (April 2024)

Note 80 school-related entrance and egress concepts (Search term: “School”)

2024 Group A Proposed Changes to the I-Codes (October 2024)

Note 40 school-related entrance and egress concepts (Search term: “School”)

Doors have long since been a simple “opening” or “fenestration”.   Doors are “portals”; nodes on the geometry of the Internet of Small Things.  There are 100’s of thousands of these nodes on any single college, university or school district.  First costs run from $1000 per door in a classroom to $100,000 per door in hospitals with maintenance and operation costs commensurate with complexity of the hardware and software needed to maintain integration of the door with building security and energy systems.

We find the bulk of best practice identified in the catalogs of the following accredited standards developers for the United States construction markets:

ASTM International

Conflicting Requirements of Exit Doors

Standard Practice for Installation of Exterior Windows, Doors and Skylights

Standard Consumer Safety Specification for Child Safety Locks and Latches for Use with Cabinet Doors and Drawers

Repair Methods for Common Water Leaks at Operable Windows and Sliding Glass Doors

Builders Hardware Manufacturers Association

International Code Council

International Building Code Chapter 10:

Doors, Gates and Turnstiles

Chapter 24: Glass and Glazing

Accessibility Requirements (Referenced from ICC A117.1)

Energy Efficiency (Referenced from IECC)

IEEE Current Issues and Recent Research

National Fire Protection Association

Steel Door Institute

University of Michigan Design Guideline 4.7: Building Access Control

University of Michigan Electrical Division 28: Electronic Safety and Security

The US federal government and all 50-states adapt safety and sustainability concepts from the foregoing publishers; either partially or whole cloth.

Today at the usual hour we examine the moment in the standard of care for doors in education communities in the United States.   Join the colloquium with the login credentials at the upper right of our home page.

Standards Michigan Office Ann Arbor Michigan | 2723 South State Street Suite 150


Doors, windows and curtain walling

January 9, 2025
jia

No Comments

Scope: Standardization in the field of doors, doorsets, windows, and curtain wall including hardware, manufactured from any suitable material covering the specific performance requirements, terminology, manufacturing sizes and dimensions, and methods of test. The Japanese Engineering Standards Committee is the Global Secretariat.

ISO-TC 162 Work Programme

Multinational manufacturing and trade in the door manufacturing industry involve the production, distribution, and sale of doors across international borders. This industry encompasses a wide range of door types, including residential, commercial, industrial, and specialty doors. Here are some of the key fine points to consider in multinational manufacturing and trade within the door manufacturing sector:

  1. Global Supply Chains:
    • Multinational door manufacturers often have complex global supply chains. Raw materials, components, and finished products may be sourced from various countries to optimize costs and quality.
  2. Regulatory Compliance:
    • Compliance with international trade regulations and standards is crucial. This includes adhering to import/export laws, product safety regulations, and quality standards, such as ISO certifications.
  3. Market Segmentation:
    • Different regions and countries may have varying preferences for door types, materials, and styles. Multinational manufacturers need to adapt their product offerings to meet local market demands.
  4. Distribution Networks:
    • Establishing efficient distribution networks is essential. This involves selecting appropriate distribution channels, including wholesalers, retailers, and e-commerce platforms, in different countries.
  5. Tariffs and Trade Barriers:
    • Import tariffs and trade barriers can significantly impact the cost of doing business across borders. Understanding and navigating these trade policies is essential for multinational door manufacturers.
  6. Localization:
    • Multinational manufacturers often localize their products to suit the preferences and requirements of specific markets. This may involve language translation, customization of door designs, or adjustments to product dimensions.
  7. Quality Control:
    • Ensuring consistent product quality across borders is critical for maintaining brand reputation. Implementing quality control processes and standards at all manufacturing locations is essential.
  8. Cultural Considerations:
    • Understanding cultural nuances and local customs can help multinational manufacturers market their products effectively and build strong customer relationships.
  9. Logistics and Transportation:
    • Efficient logistics and transportation management are essential for timely delivery of doors to international markets. This includes selecting appropriate shipping methods and managing inventory efficiently.
  10. Sustainability:
    • Sustainability concerns, such as environmental impact and responsible sourcing of materials, are becoming increasingly important in the door manufacturing industry. Multinational manufacturers may need to comply with different environmental regulations in various countries.
  11. Intellectual Property:
    • Protecting intellectual property, including patents and trademarks, is crucial in a global market. Manufacturers must be vigilant against counterfeiting and IP infringement.
  12. Market Research:
    • Conducting thorough market research in each target country is essential. This includes understanding local competition, pricing dynamics, and consumer preferences.
  13. Risk Management:
    • Multinational manufacturing and trade involve various risks, including currency fluctuations, political instability, and supply chain disruptions. Implementing risk mitigation strategies is vital for long-term success.

In summary, multinational manufacturing and trade in the door manufacturing industry require a comprehensive understanding of global markets, regulatory compliance, cultural differences, and logistics. Successfully navigating these complexities can help manufacturers expand their reach and compete effectively in a globalized world.

Relevant agencies:

ASTM International: ASTM develops and publishes voluntary consensus standards used in various industries, including construction. ASTM standards cover materials, testing procedures, and specifications related to doors, windows, and associated components.

National Fenestration Rating Council (NFRC): NFRC is a U.S.-based organization that focuses on rating and certifying the energy performance of windows, doors, and skylights. They provide performance ratings and labels used by manufacturers to communicate product energy efficiency to consumers.

American Architectural Manufacturers Association (AAMA): AAMA is a U.S.-based organization that develops standards and specifications for windows, doors, and curtain walls. Their standards cover performance, design, and testing.

National Institute of Building Sciences (NIBS): NIBS is involved in research, education, and the development of standards for the building and construction industry in the United States.

 

St. Ambrose University

January 7, 2025
mike@standardsmichigan.com
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Neonatal Care Units

January 6, 2025
mike@standardsmichigan.com
No Comments

Today at 16:00 UTC we examine the interaction among several standards catalogs of ANSI accredited, consortia and ad hoc electrotechnology standards developers with respect to governmental regulation of maternity and neonatal care at all levels.

  • University of Kentucky

Maternity and obstetrics facilities

Architectural standards for Neonatal Intensive Care Units (NICUs) are designed to create a safe, efficient, and healing environment for newborns requiring intensive medical care. These standards encompass various aspects, including layout, space requirements, environmental controls, and infection control. Here are the key architectural standards for NICUs:

1. Space Requirements

Single-Patient Rooms: Preferably, NICUs should have single-patient rooms to reduce the risk of infection and provide privacy for families. The recommended size for each room is around 150 square feet.
Open Bay Design: If single-patient rooms are not feasible, open bay designs with a minimum of 120 square feet per infant space should be considered.
Family Areas: Incorporate family zones within or adjacent to the patient care area to support family involvement in care.

2. Environmental Controls

Lighting: Use adjustable lighting to mimic natural day-night cycles. Dimmable and indirect lighting is recommended to reduce stress on infants.
Noise Control: Implement sound-absorbing materials and design to maintain noise levels below 45 decibels. Alarms and other auditory signals should be as non-disruptive as possible.
Temperature and Humidity: Maintain a controlled environment with temperatures between 72-78°F and relative humidity between 30-60% to support the infants’ thermal regulation.

3. Infection Control

Hand Hygiene Facilities: Provide sinks with touchless faucets in each patient room and strategically placed hand sanitizer dispensers.
Air Quality: Use HEPA filtration systems to maintain high air quality and reduce airborne infections. Ensure proper ventilation and air exchange rates.
Surfaces and Materials: Use easily cleanable and antimicrobial surfaces and materials to minimize the risk of infection.

4. Functional Design

Nurse Stations: Design nurse stations to have a clear line of sight to all patient areas. Centralized and decentralized stations can be used depending on the layout.
Equipment and Storage: Include adequate storage space for medical equipment and supplies within close proximity to patient care areas. Ensure equipment is easily accessible yet out of the way to prevent clutter.
Utilities and Support Spaces: Provide adequate space for utilities such as oxygen, medical gases, electrical outlets, and data ports. Support spaces should include areas for medication preparation, clean and dirty utility rooms, and staff break areas.

5. Safety and Accessibility

Emergency Access: Ensure clear and unobstructed pathways for emergency access and equipment transport.
Accessibility: Design the unit to be fully accessible to staff, patients, and families, including those with disabilities. Compliance with ADA (Americans with Disabilities Act) standards is essential.
Security: Implement security measures to control access to the NICU, including electronic access control systems and surveillance cameras.

6. Aesthetic and Healing Environment

Color and Decor: Use calming colors and artwork to create a soothing environment. Avoid bright or overly stimulating colors.
Nature Integration: Where possible, incorporate natural elements such as views of nature, indoor plants, and natural light to promote a healing environment.

7. Flexibility and Future Expansion

Modular Design: Use a modular design approach to allow for easy reconfiguration and future expansion of the NICU as needed.
Scalability: Plan for scalable infrastructure to accommodate technological advancements and changing patient care needs.
These architectural standards aim to provide a safe, efficient, and supportive environment for both the infants and their families, while also meeting the operational needs of healthcare providers.

Case Studies:

A newborn in distress

Neonatal Clinical Outcomes: a Comparative Analysis

Camera-Based Heart Rate Variability for Estimating the Maturity of Neonatal Autonomic Nervous System

Modulation frequency analysis of seizures in neonatal EEG

EEG ‘diarization’ for the description of neonatal brain injuries


List of colleges and universities with extensive neonatal research and clinical facilities:

East Coast

    1. Harvard University (Boston, MA)
      • Affiliated with Boston Children’s Hospital and Brigham and Women’s Hospital.
      • Specialized centers for neonatal intensive care and research.
    2. Johns Hopkins University (Baltimore, MD)
      • Strong neonatal research through the Johns Hopkins Children’s Center.
    3. Columbia University (New York, NY)
      • Known for the Morgan Stanley Children’s Hospital and advanced neonatal care.
    4. University of Pennsylvania (UPenn) (Philadelphia, PA)
      • Penn Medicine and Children’s Hospital of Philadelphia (CHOP) collaborate on neonatal studies.

Midwest

    1. University of Chicago (Chicago, IL)
      • Comer Children’s Hospital focuses on neonatal care and research.
    2. University of Michigan (Ann Arbor, MI)
      • The C.S. Mott Children’s Hospital has a Level IV NICU and leads neonatal innovation.
    3. Washington University in St. Louis (St. Louis, MO)
      • Affiliated with St. Louis Children’s Hospital for neonatal research.

South

    1. Duke University (Durham, NC)
      • Duke Children’s Hospital is known for its neonatal-perinatal research.
    2. University of Texas Southwestern Medical Center (Dallas, TX)
      • Conducts cutting-edge neonatal research in partnership with Parkland Hospital.
    3. Vanderbilt University (Nashville, TN)
      • The Monroe Carell Jr. Children’s Hospital has a strong neonatal program.

West Coast

    1. Stanford University (Stanford, CA)
      • Lucile Packard Children’s Hospital is a leader in neonatal research and care.
    2. University of California, San Francisco (UCSF) (San Francisco, CA)
      • Renowned for its neonatology program and neonatal clinical trials.
    3. University of Washington (Seattle, WA)
      • Affiliated with Seattle Children’s Hospital for neonatal research.

International

    1. University of Toronto (Toronto, Canada)
      • SickKids Hospital is a global leader in neonatal care and research.
    2. University College London (UCL) (London, UK)
      • Neonatal research at Great Ormond Street Hospital and University College Hospital.
    3. University of Melbourne (Melbourne, Australia)
      • Affiliated with the Royal Children’s Hospital and its neonatal programs.

Healthcare Facilities Code

January 6, 2025
mike@standardsmichigan.com
, , ,
No Comments

“The Doctor”  1891 Sir Luke Fildes

The NFPA 99 Healthcare Facilities Code committee develops a distinct consensus document (i.e. “regulatory product”) that is distinct from National Electrical Code Article 517; though there are overlaps and gaps that are the natural consequence of changing technology and regulations.  It is worthwhile reviewing the scope of each committee:

NFPA 99 Scope: This Committee shall have primary responsibility for documents that contain criteria for safeguarding patients and health care personnel in the delivery of health care services within health care facilities: a) from fire, explosion, electrical, and related hazards resulting either from the use of anesthetic agents, medical gas equipment, electrical apparatus, and high frequency electricity, or from internal or external incidents that disrupt normal patient care; b) from fire and explosion hazards; c) in connection with the use of hyperbaric and hypobaric facilities for medical purposes; d) through performance, maintenance and testing criteria for electrical systems, both normal and essential; and e) through performance, maintenance and testing, and installation criteria: (1) for vacuum systems for medical or surgical purposes, and (2) for medical gas systems; and f) through performance, maintenance and testing of plumbing, heating, cooling , and ventilating in health care facilities.

NFPA 70 Article 517 Scope:  The provisions of this article shall apply to electrical construction and installation criteria in healthcare facilities that provide services to human beings.  The requirements in Parts II and III not only apply to single-function buildings but are also intended to be individually applied to their respective forms of occupancy within a multi-function building (e.g. a doctor’s examining room located within a limited care facility would be required to meet the provisions of 517.10)   Informational Note: For information concerning performance, maintenance, and testing criteria, refer to the appropriate health care facilities documents.

In short, NFPA 70 Article 517 is intended to focus only on electrical safety issues though electrotechnology complexity and integration in healthcare settings (security, telecommunications, wireless medical devices, fire safety, environmental air control, etc.) usually results in conceptual overlap with other regulatory products such as NFPA 101 (Life Safety Code) and the International Building Code.

Several issues were recently debated by the Article 517 technical committee during the 2023 National Electrical Code Second Draft meetings

  • The conditions under which reconditioned electrical equipment be installed in healthcare settings; contingent on listing and re-certification specifics.
  • Relaxation of the design rules for feeder and branch circuit sizing through the application of demand factors.
  • Application of ground fault circuit interrupters.
  • “Rightsizing” feeder and branch circuit power chains (Demand factors in Section 517.22)
  • Patient care space categories
  • Independence of power sources (517.30)

There are, of course, many others, not the least of which involves emergency management.  For over 20 years our concern has been for the interdependency of water and electrical power supply to university hospitals given that many of them are part of district energy systems.

We need to “touch” this code at least once a month because of its interdependence on other consensus products by other standards developing organizations.  To do this we refer NFPA 99 standards action to the IEEE Education & Healthcare Facilities Committee which meets online four times monthly in European and American time zones.

The transcript of NEC Article 517 Public Input for the 2023 revision of NFPA 70 is linked below.  (You may have to register your interest by setting up a free-access account):

Code-Making Panel 15 (NEC-P15) Public Input Report

Code-Making Panel 15 (NEC-P15) Public Comment Report

Technical committees will meet in June to endorse the 2023 National Electrical Code.

Public consultation on the Second Draft closes May 31st. Landing page for selected sections of the 2024 revision  of NFPA 99 are linked below:

Electrical Systems (HEA-ELS)

Fundamentals (HEA-FUN)

Health Care Emergency Management and Security (HEA-HES)

Second Draft Comments are linked below:

Electrical Systems (HEA-ELS)

Fundamentals (HEA-FUN)

Health Care Emergency Management and Security (HEA-HES)

NITMAM closing date: March 28, 2023

We break down NFPA 70 and NFPA 99 together and keep them on the standing agenda of both our Power and Health colloquia; open to everyone.  See our CALENDAR for the next online meeting.

"The trained nurse has become one of the great blessings of humanity, taking a place beside the physician and the priest" - William Osler"While we try to teach our children all about life, our children teach us what life is all about" - Angela Schwindt "The true art of pediatrics lies not only in curing diseases but also in preventing them" - Abraham JacobiGermany

Issues: [12-18, [15-97] and [16-101]

Contact: Mike Anthony, Jim Harvey, Robert Arno, Josh Elvove, Joe DeRosier, Larry Spielvogel

NFPA Staff Liaison: Jonathan Hart

Archive / NFPA 99

 

 

 

Evensong “You Can Close Your Eyes”

January 5, 2025
mike@standardsmichigan.com
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Kawa po Polsku

January 4, 2025
mike@standardsmichigan.com
,
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Homeschool Laws By State

January 3, 2025
mike@standardsmichigan.com
No Comments

Education happening outside the home offers several advantages that contribute to the holistic development of children:

Socialization: Interacting with peers and teachers in a structured environment helps children learn social skills, cooperation, and conflict resolution, which are essential for navigating the complexities of adult life.

Diverse Perspectives: Schools expose children to a variety of viewpoints, backgrounds, and cultures, fostering tolerance, empathy, and understanding of diversity.

Specialized Instruction: Qualified educators are trained to teach specific subjects and tailor instruction to different learning styles, ensuring that children receive a well-rounded education.

Access to Resources: Schools provide access to resources such as libraries, laboratories, sports facilities, and technology that may not be available at home, enriching the learning experience.

Extracurricular Activities: Schools offer extracurricular activities like sports, music, drama, and clubs, which help children discover their interests, develop talents, and build leadership skills.

Preparation for the Real World: Schools simulate real-world environments, teaching children important life skills such as time management, responsibility, and teamwork, which are crucial for success in adulthood.

Professional Development: Educators undergo continuous training and development to stay updated with the latest teaching methodologies and educational practices, ensuring high-quality instruction for students.

While home-based learning can complement formal education and offer flexibility, the structured environment and resources provided by schools play a vital role in shaping well-rounded individuals ready to thrive in society.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content