Product Standards for Plugs and Receptacles

Loading
loading...

Product Standards for Plugs and Receptacles

August 8, 2023
mike@standardsmichigan.com
No Comments

Manufacturers retain testing laboratories and related conformance organizations — Nationally Recognized Testing Laboratories — to assure their products meet safety (and sometimes sustainability) standards. Today we will examine the certification catalog of a legacy, and familiar name in the electrical device domain.  At a patient’s bedside in a hospital or healthcare setting, various electrical loads or devices may be present to provide medical care, monitoring, and comfort. Some of the common electrical loads found at a patient’s bedside include:

Hospital Bed: Electric hospital beds allow for adjustments in height, head position, and leg position to provide patient comfort and facilitate medical procedures.

Patient Monitor: These monitors display vital signs such as heart rate, blood pressure, oxygen saturation, and respiratory rate, helping healthcare professionals keep track of the patient’s condition.

Infusion Pumps: These devices administer medications, fluids, and nutrients intravenously at a controlled rate.

Ventilators: Mechanical ventilators provide respiratory support to patients who have difficulty breathing on their own.

Pulse Oximeter: This non-invasive device measures the oxygen saturation level in the patient’s blood.

Electrocardiogram (ECG/EKG) Machine: It records the electrical activity of the heart and is used to diagnose cardiac conditions.

Enteral Feeding Pump: Used to deliver liquid nutrition to patients who cannot take food by mouth.

Suction Machine: It assists in removing secretions from the patient’s airway.

Warming Devices: Devices like warming blankets or warm air blowers are used to maintain the patient’s body temperature during surgery or recovery.

Reading Lights: Bedside lights that allow patients to read or perform tasks without disturbing others.

Television and Entertainment Devices: To provide entertainment and alleviate boredom during the patient’s stay.

Charging Outlets: Electrical outlets to charge personal electronic devices like smartphones, tablets, and laptops.

It’s important to note that the specific devices and equipment present at a patient’s bedside may vary depending on the level of care required and the hospital’s equipment standards. Additionally, strict safety measures and electrical grounding are essential to ensure patient safety when using electrical devices in a healthcare setting.  

We have been tracking the back-and-forth on proposals, considerations, adoption and rejections in the 3-year revision cycles of the 2023 National Electrical Code and the2021 Healthcare Facilities Code.  The documents listed below are frequently referenced in both NFPA 70 and NFPA 99:

UL 498 Landing Page

Standard for Attachment Plugs and Receptacles 

Hospital Plug Load

Collaborative Standards Development System

Tune!FM

August 7, 2023
mike@standardsmichigan.com
,
No Comments

CLICK IMAGE to access livestream

Tune!FM is our very own, student-driven radio station, located at our Armidale campus.  Our high-power, open narrowcasting service is operated by the legendary team from UNE Life alongside dedicated UNE students.  The station services the University, our students globally, UNE staff and the greater Armidale community.”

About Us

History of Radio Regulations

Transmission Line Right-of-Way

August 7, 2023
mike@standardsmichigan.com

No Comments

 

Optimization of Transmission Line Right-of-Way

Ajaykumar Patel, et. al

School of Engineering & Technology, Central Queensland University, Melbourne, Australia

 

Abstract: A specific land is required to design the transmission line to construct effectively and maintain properly is called right of way of transmission line. It is calculated by considering mainly three electrical quantity related transmission line such as electric field, magnetic field and radio interference. Corona effect is considered for the evolution of right of way. By considering these parameters, it provide idea related to effect surrounding the area nearby transmission line.

The determination of transmission line right of way for public electric utilities typically involves a combination of legal considerations, regulatory requirements, environmental assessments, and public engagement: 

Planning and Route Selection: Public electric utilities assess their power transmission needs based on factors such as population growth, energy demand, and infrastructure upgrades. They consider various potential routes and alternatives, taking into account factors like terrain, existing infrastructure, land use, and environmental sensitivities.

Environmental and Impact Assessments: Utilities conduct environmental and impact assessments to evaluate the potential effects of the proposed transmission line routes. These assessments examine factors such as wildlife habitats, endangered species, wetlands, water bodies, cultural or historical sites, and scenic landscapes. The purpose is to identify potential impacts and propose mitigation measures.

Regulatory and Permitting Process: Public utilities must comply with applicable laws and regulations governing transmission line development. This includes obtaining necessary permits and approvals from relevant regulatory agencies at the federal, state, and local levels. The requirements vary depending on the jurisdiction, but they often involve environmental agencies, land management agencies, and public utility commissions.

Public Engagement and Consultation: Utilities engage in public consultation and outreach to gather feedback from affected communities, landowners, and stakeholders. They conduct public hearings, open houses, and meetings to inform the public about the project, address concerns, and consider alternative routes suggested by the community. This engagement helps ensure transparency and public input in the decision-making process.

Negotiations and Eminent Domain: Utilities negotiate with landowners along the proposed transmission line route to acquire the necessary right of way. In some cases, if an agreement cannot be reached, utilities may exercise eminent domain, which is a legal process that allows them to acquire the land for public use while providing just compensation to the affected landowner.

Legal Framework: The legal framework for determining transmission line right of way varies by jurisdiction. Laws related to land use, zoning, environmental protection, and eminent domain play a role in defining the process and requirements for securing right of way.

Procedures vary depending on the country, state, or region where the transmission line is being developed. Local regulations, environmental conditions, and public engagement practices will influence the overall process.

Related:

Optimization of Transmission Line Right-of-Way

Reducing the duration of right-of-way acquisition process for high voltage transmission power lines projects

Diminishing the Right of Way (RoW) With Multi Voltage Multi Terminal Transmission Tower

Information System for the Vegetation Control of Transmission Lines Right-of-way

Partially underground transmission circuits: safety issue for current and future power systems

2023 National Electrical Safety Code

IEEE Guide to the Installation of Overhead Transmission Line Conductors, IEEE Std. 524, 1992

Pacific Gas & Electric: Overhead Transmission Line Design Criteria

US Department of Agriculture Rural Utilities Service: Design Manual for High Voltage Transmission Lines

Building Electrical Wiring Based on Microsystem Criteria

August 6, 2023
mike@standardsmichigan.com
,
No Comments

Electrical Distribution Systems Based on Microsystem Criteria

Giuseppe Parise & Luigi Parise
Civil and Industrial Engineering Faculty, Sapienza University of Rome, Italy
James R. Harvey & Michael A. Anthony
University of Michigan Hospitals and Health Centers, Ann Arbor, MI, USA

 

This paper deals with an innovative design strategy of building power systems by introducing criteria based on both the “installation approach” and the “operating approach” applying plan-do-check-act (PDCA) cycle. The In-Op design of the electrical power systems takes care of the worst cases of configurations, adequate gaps on load in selecting the rating of components, the actual mean losses to evaluate their energetic operation, and to avoid excessive gaps on the lifetime of components. With this aim, the authors suggest consideration of the thermal aging model of Arrhenius to review the actual gap on load in selecting the rating of components. In reference to IEC standards, this paper underlines in the circuits design the cable steady and transient current densities, the load current torque density as “natural” parameters that allow applying a thumb rule in the classic sizing of the cross-sectional area of circuit conductors. Microsystem criteria in power systems design allow structuring their configuration with components of smaller size to reduce radically the volume of circuit conductors with more sensitive results in the branch distribution. The authors suggest why not reconsider the series of commercial cross section areas of power cables.

This paper was presented at the IEEE Industrial Applications Society meetings in 2015 and is now available in IEEE Transactions on Industry Applications ( Volume: 54 , Issue: 1 , Jan.-Feb. 2018 ).    The authors revisit the first principles of conductor ampacities and conclude by asking a question: What Innovations Without Cultural Changes?

In the United States, and most of North America, the National Fire Protection Association has the largest platform, and the longest history in electrical power engineering for buildings.  In other words: the conversation about electrical safety within buildings is informed by the perspective of fire safety professionals.  In Europe, not so much.   The inspiration for European electrical safety is found in a shock protection.

The IEEE effectively ceded administration of building electrical safety to the NFPA and spent decades providing the platform for leading practice discovery for electrical power generation and distribution outside buildings — i.e. public utilities.  In retrospect this “division of labor” roughly follows the money flows to and from manufacturers and insurance companies.

The cultural question raised in the paper is reproduced, in part, below:

“…For an actual safety program, a comparative analysis of international electrical approaches on distribution systems will facilitate an understanding of their similarities and differences and will promote the design of new equipment of high efficiency like AM Transformers and new integrated common solutions, like a new series of commercial cross section areas of the power cables efficient for reducing conductors volume in balance with the costs….”

The inquiry in this paper revisits specific terms in the Arrhenius Equation.

We collaborate closely with the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in European and American time zones.  Risk managers, electrical safety inspectors, facility managers and others are welcomed to click into those teleconferences also.  We expect that concepts and recommendations this paper will find their way into future revisions of US and international electrical safety codes and standards.

Issue: [19-129]

Category: Electrical, Facility Asset Management, Fire Safety, International

Colleagues: Mike Anthony, Jim Harvey, Christel Hunter, Giuseppe Parise, Luigi Parise

 

Reverse Engineering

August 5, 2023
mike@standardsmichigan.com
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Fietsenrek

August 4, 2023
mike@standardsmichigan.com

No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

First Year Sunday

August 3, 2023
mike@standardsmichigan.com
,
No Comments

Sacred Spaces

Standards Massachusetts

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content