Use Case: Julia Programming Language for Artificial Intelligence

Loading
loading...

Use Case: Julia Programming Language for Artificial Intelligence

March 10, 2025
[email protected]
, ,
No Comments

Julia is a programming language that has gained popularity in the field of artificial intelligence (AI) and scientific computing for several reasons.

High Performance: Julia is designed to be a high-performance language, often compared to languages like C and Fortran. It achieves this performance through just-in-time (JIT) compilation, allowing it to execute code at speeds close to statically compiled languages. This makes Julia well-suited for computationally intensive AI tasks such as numerical simulations and deep learning.

Ease of Use: Julia is designed with a clean and expressive syntax that is easy to read and write. It feels similar to other high-level languages like Python, making it accessible to developers with a background in Python or other scripting languages.

Multiple Dispatch: Julia’s multiple dispatch system allows functions to be specialized on the types of all their arguments, leading to more generic and efficient code. This feature is particularly useful when dealing with complex data types and polymorphic behavior, which is common in AI and scientific computing.

Rich Ecosystem: Julia has a growing ecosystem of packages and libraries for AI and scientific computing. Libraries like Flux.jl for deep learning, MLJ.jl for machine learning, and DifferentialEquations.jl for solving differential equations make it a powerful choice for AI researchers and practitioners.

Interoperability: Julia offers excellent interoperability with other languages, such as Python, C, and Fortran. This means you can leverage existing code written in these languages and seamlessly integrate it into your Julia AI projects.

Open Source: Julia is an open-source language, which means it is freely available and has an active community of developers and users. This makes it easy to find resources, documentation, and community support for your AI projects.

Parallel and Distributed Computing: Julia has built-in support for parallel and distributed computing, making it well-suited for tasks that require scaling across multiple cores or distributed computing clusters. This is beneficial for large-scale AI projects and simulations.

Interactive Development: Julia’s REPL (Read-Eval-Print Loop) and notebook support make it an excellent choice for interactive data analysis and experimentation, which are common in AI research and development.

While Julia has many advantages for AI applications, it’s important to note that its popularity and ecosystem continue to grow, so some specialized AI libraries or tools may still be more mature in other languages like Python. Therefore, the choice of programming language should also consider the specific requirements and constraints of your AI project, as well as the availability of libraries and expertise in your development team.

We present a use case below:

Université Sorbonne Paris Nord

A Julia Module for Polynomial Optimization with Complex Variables applied to Optimal Power Flow

 

Julie Sliwak – Lucas Létocart | Université Sorbonne Paris Nord

Manuel Ruiz | RTE R&D, Paris La Défense

Miguel F. Anjos | University of Edinburgh

 

ABSTRACT.  Many optimization problems in power transmission networks can be formulated as polynomial problems with complex variables. A polynomial optimization problem with complex variables consists in optimizing a real-valued polynomial whose variables and coefficients are complex numbers subject to some complex polynomial equality or inequality constraints. These problems are usually directly expressed with real variables. In this work, we propose a Julia module allowing the representation of polynomial problems in their original complex formulation. This module is applied to power system optimization and its generic design enables the description of several variants of power system problems. Results for the Optimal Power Flow in Alternating Current problem and for the Preventive-Security Constrained Optimal Power Flow problem are presented.

University of Edinburg

CLICK HERE to order complete paper


One World Café

March 9, 2025
[email protected]

No Comments

Standards New YorkUB Operating Budget Report

There are never too few people to make a decision in academia: With the approval of the ‘Capital Planning Board’, ‘Campus Dining & Shops’ brings a new dining experience as part of the ‘Branding Office’s’ ‘Heart of the Campus initiative’; mimicking a trend that converges the family kitchen into a library experience.

The ‘Office of Student Life’ played an integral role in all phases of the project and has prepared this virtual drone tour.

One World Cafe

Center for the Arts

Energy Savings Due to Daylight Saving in Mexico

March 9, 2025
[email protected]
No Comments

https://www.facebook.com/photo/?fbid=965536199038787&set=a.324360603156353

“The Conquest of Energy” | José Chávez Morado

Energy Savings Due to Daylight Saving in Mexico; Case Study: Buildings and Facilities of CU-UNAM

Andrea Fernanda Rivera-Castro, et. al

This paper presents an analysis of energy savings in typical university campus buildings due to Daylight Saving Time in Mexico. The electricity demand load profiles are analyzed in five facilities of the National Autonomous University of Mexico central campus. Each facility presents different demand characteristics according to its usage. Demand data have been obtained through electrical measurements using Survalent ONE SCADA system®. The last week winter period demand profile compared to the first week summer period demand profile are shown and analyzed. Results have shown DST effects on energy consumption in university facilities. With these results, it is also possible to develop decision-making programs to drive energy efficient plans in university campus. In addition, this information can be used to promote efficient and clean energy micro grids. Including ocean energy generation for isolated communities.


Global Positioning System: A Generation of Service to the World

March 8, 2025
[email protected]
, , ,
No Comments

Citizens of the Earth depend upon United States leadership in this technology for several reasons:

Development: The GPS was originally developed by the US Department of Defense for military purposes, but it was later made available for civilian use. The US has invested heavily in the development and maintenance of the system, which has contributed to its leadership in this area.

Coverage: The GPS provides global coverage, with 24 satellites orbiting the earth and transmitting signals that can be received by GPS receivers anywhere in the world. This level of coverage is unmatched by any other global navigation system.

Accuracy: The US has worked to continually improve the accuracy of the GPS, with current accuracy levels estimated at around 10 meters for civilian users and even higher accuracy for military users.

Innovation: The US has continued to innovate and expand the capabilities of the GPS over time, with newer versions of the system including features such as higher accuracy, improved anti-jamming capabilities, and the ability to operate in more challenging environments such as indoors or in urban canyons.

Collaboration: The US has collaborated with other countries to expand the reach and capabilities of the GPS, such as through the development of compatible navigation systems like the European Union’s Galileo system and Japan’s QZSS system.

United States leadership in the GPS has been driven by a combination of investment, innovation, collaboration, and a commitment to improving the accuracy and capabilities of the system over time.

Timing Applications: GPS.GOV

Suggested Functional Specifications for a GPS-Synchronized Clock System using Network Time Protocol and Power over Ethernet

Construction Specifications for Exterior Clocks

Seamless positioning system using GPS and beacons for community service robot

Global Positioning System: Monitoring the Fuel Consumption in Transport Distribution

Horologiorum

March 8, 2025
[email protected]
, , , , , , ,
No Comments

“Gather Ye Rosebuds While Ye May” John Herrick | John William Waterhouse

“The Sound of Noon” on the Charlottesville Campus

University of New Hampshire

Westminster Chimes at Rockefeller Memorial Chapel

University of Michigan

Hayes Clock Tower

Ars Sonora Bell Tower

Western University Ontario

Trinity College

Mississippi State University

南洋華僑中學

Shelton State Community College Alabama

Winona State University

Oklahoma City Community College

University of Illinois

Bucknell University Pennsylvania

St. Francis Xavier College Missouri

University of Mississippi

University of North Dakota

University of Montana

Gardner-Webb University North Carolina

University of California Berkeley

Auburn University Alabama

 

Indiana University

Sam Houston State University Texas

Otago University New Zealand

Hillsdale College Michigan


More

ISO 8601:2004 Data elements and interchange formats — Information interchange — Representation of dates and times

National Institute of Science & Technology: Time and Frequency

National Institute of Science & Technology: Current Reliability of the WWVB Time Code

NFPA 72 National Fire Alarm & Signaling Code Chapter 23: Protected Premises Alarm and Signaling Systems

Meatloaf

March 7, 2025
[email protected]
,
No Comments

Standards Illinois

Meatloaf is traced back to ancient times when people started combining ground meat with other ingredients for a more economical and substantial meal.

Colonial America: The concept of mixing ground meat with breadcrumbs or grains dates back to medieval Europe. When settlers arrived in North America, they adapted these techniques to the ingredients available to them, such as native grains and game meats.

19th Century: As meat grinders became more widely available in the 19th century, the preparation of ground meat dishes became easier. Meatloaf gained popularity during this time, with regional variations emerging across the United States. Families would incorporate various seasonings, herbs, and fillers based on local ingredients and preferences.

World War II and Post-War Era: Meatloaf became even more popular during World War II and the post-war era due to its affordability and versatility. Families could stretch a small amount of meat by combining it with breadcrumbs, rice, or oats, making it an economical choice during times of rationing.

1950s and 1960s: Meatloaf reached its peak of popularity in the mid-20th century, becoming a staple of American home cooking. The dish was often featured in cookbooks and advertisements, showcasing its versatility and ease of preparation.

Over time, meatloaf recipes have evolved with regional and personal preferences. Some variations include using different meats (beef, pork, veal, or a combination), adding vegetables, experimenting with various seasonings, and glazing with sauces.

 

Campus Dining recipe: Meatloaf

Ingredients:

Celery, chopped fine, 1 & 1/2 oz.
Yellow onions, chopped fine, 2 & 3/4 oz.
Ground beef, 2 lbs.
Eggs, 2 whole
Ketchup, 2 & 1/3 Tbsp.
Mustard, 2 3/8 tsp.
Worcestershire sauce, 1 1/8 tsp.
Italian seasoning, 5/8 tsp.
Bread crumbs, plain, 3 & 1/2 oz.
Kosher salt, 3/8 tsp.
Black pepper, 1/4 tsp.
Topping

Ketchup, 1 & 1/2 oz.
Water, 2 3/8 tsp.
Instructions

Preheat oven to 325 degrees.

Place ground beef in mixing bowl. Add eggs and combine.

Add ketchup (2 & 1/3 Tbsp.), mustard, Worcestershire sauce, Italian seasoning, onions, celery, breadcrumbs, salt, and pepper. Mix well to combine. Meatloaf should be firm. If mixture is not, add more bread crumbs.

Place meatloaf in a loaf pan. Make sure it is spread evenly.

Bake for about 45 minutes, uncovered. Remove from oven.

Combine ketchup (1 & 1/2 oz.) and water. Spread over meatloaf.

Return to oven for another 15-20 minutes, or until internal temperature reaches 155 degrees.

Let the meatloaf rest for 30 minutes prior to cutting.

Illinois

East Village Café

March 7, 2025
[email protected]

No Comments

“The aroma of coffee is the scent of civilization.”
The Spectator, No. 91

 

Gingerbread Latte & Mince Pie

GOV.UK University Design Forum 

 

Charles Hansom Architect

Uniform Swimming Pool, Spa & Hot Tub Code

March 7, 2025
[email protected]
,
No Comments
water

“The Bathing Pool” / Hubert Robert (French, 1733–1808) / Gift of J.P. Morgan

2024 Uniform Swimming Pool, Spa and Hot Tub Code

READ-ONLY ACCESS

The IAPMO code development process is one of the best in the land.  Its Read-Only Access — needed for light research — is also the best in the land; unlike other ANSI accredited standards developers (who shall be un-named).   The current edition is dated 2024, with the 2027 revision accepted public input until March 3, 2025 according the schedule linked below:

2027 USPSHTC Code Development Calendar

Related:

What are Plumbing Codes?

Uniform Plumbing Code

Coronavirus in Plumbing Systems

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content