God Beyond All Praising

Loading
loading...

God Beyond All Praising

March 28, 2025
mike@standardsmichigan.com

No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

Nourriture de printemps

March 28, 2025
mike@standardsmichigan.com
No Comments

University of Vermont | Chittenden County

Today we break down the catalog for food safety in education communities; with primary attention to consultations from private standard developing organizations and federal agencies charged with food safety.  We do so with sensitivity to animals and plants and sustainability of the global food supply chain.   Many schools are the communal cafeterias for the communities that own and operate them and run at commercial scale.

We prepare responses to public consultations released by standards developing organizations which, in many cases, have significant conformance enterprises.  Core titles are published by the ANSI accredited organizations listed below:

3-A Sanitary Standards

Catalog

ASHRAE International

The ASHRAE catalog is the most cross-cutting and fastest moving catalog in the land.   If you claim ownership of the United States energy domain you pretty much capture everything related campus safety and sustainability.  Best to deal with it on a day-by-day basis as we usually do according to daily topics shown on our CALENDAR.

Association for Packaging and Processing Technologies

American Society of Agricultural and Biological Engineers

Institute of Electrical and Electronic Engineers

National Electrical Safety Code   (Our particular interest lies in the safety and reliability of off-campus agricultural and research facilities that receive power from regulated utilities)

Kitchen Safety and Security System for Children

TupperwareEarth: Bringing Intelligent User Assistance to the “Internet of Kitchen Things”

Designing an IoT based Kitchen Monitoring and Automation System for Gas and Fire Detection

Re-Inventing the Food Supply Chain with IoT: A Data-Driven Solution to Reduce Food Loss

International Code Council

Commercial Kitchens

International Building Code Assembly Group A-2

International Building Code Group U Section 312 Agricultural Buildings

International Building Code Moderate Hazard Factory Industrial Group F-1 (Food Processing)

Who Gets Rich From School Lunch

National Fire Protection Association

Kitchen Wiring

National Electrical Code Article 210 (Branch Circuits)

National Electrical Code Article 547 (Agricultural Buildings)

Standard for the Installation of Air-Conditioning and Ventilating Systems

Public Input Report for the 2024 Revision

Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations

Public Input Report for the 2024 Revision

NSF International

Food Equipment

Commercial Warewashing Equipment

Commercial Refrigerators and Freezers

Commercial Cooking, Rethermalization and Powered Hot Food Holding and Transport Equipment

Commercial Powered Food Preparation Equipment

US Federal Government:

US Department of Agriculture

Food & Drug Administration (HACCP)

State Governments:

Lorem ipsum @StandardsState

Global:

International Organization for Standardization

International Electrotechnical Commission

Codex Alimentarius

Food safety and sustainability standards populate are of the largest domains we track so if we need a break0-out session, let’s do it.  Use the login credentials at the upper right of our home page.

University of Kentucky College of Agriculture, Food and Environment


More

Standards supporting vertical farming

STANDARDS SUPPORT SOPHISTICATED FARMING METHODS THAT BRING PRODUCE TO YOUR TABLE

US Food & Drug Administration: Food Facility Registration Statistics (as  of January 11, 2021)

National Grange of the Order of Patrons of Husbandry

The U.S. Land-Grant University System: An Overview

American Society of Agricultural and Biological Engineers Standards Development

The origin of the Land grant act of 1862 

International Electrotechnical Commission: Keeping food safe from farm to plate

 Codex Alimentarius

Council for the Advancement of Standards in Higher Education: Dining Services Programs

Science and Our Food Supply: A Teacher’s Guide for High School Classrooms

Food Code 2017

 

Commercial Kitchens

March 28, 2025
mike@standardsmichigan.com
No Comments

2025 GROUP B PROPOSED CHANGES TO THE I-CODES: Complete Monograph (2630 pages)

36 kitchen related proposals will be reviewed today

2024 GROUP A PROPOSED CHANGES TO THE I-CODES: Complete Monograph (2658 pages)

Commercial kitchens offer several benefits, such as efficient food preparation and large-scale production, allowing businesses to meet high demand. They provide professional-grade equipment and ample space, enabling chefs to explore culinary creativity. Commercial kitchens also promote hygiene and food safety standards, with dedicated cleaning protocols and inspections. However, hazards can arise from the high-temperature cooking equipment, sharp tools, and potentially hazardous substances. There is also a risk of burns, slips, and falls, emphasizing the importance of proper training and safety measures. Adequate ventilation and fire safety systems are vital to prevent accidents and maintain a healthy working environment.

The International Code Council is re-configuring its code development process in nearly every dimension. While that situation stabilizes let us review the back-and-forth on this topic during the previous revision cycle (linked below):

2021 International Building Code Section 306 Factory Group F Moderate Hazard

2021 International Fire Code Section 606 Commercial Cooking Equipment and Systems

The International Code Council has recently re-configured its code development calendar:

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

Public hearings on the proposed changes happen in Orlando, April 7-16.

This is a summary of the actions taken on the 2024 Comments on Proposed Changes to the ICC International Codes at the October 23-28, 2024 Committee Action Hearings #2 held at the Long Beach Convention Center, Long Beach, California.  Balloting of local building code officials is now underway.

 

Commercial kitchen electrical power wiring requirements are covered extensively in Article 210 through Article 215 of the National Electrical Code.  Standards action in this domain is referred to IEEE Education & Healthcare Facility Committee.

ASHRAE International: Calculating Airflow Rates, Cooking Loads in Commercial Kitchens

Related

International Mechanical Code: Chapter 10 Boilers, Water Heaters and Pressure Vessels

AGA Response to The Atlantic Article about Natural Gas Cooking

Thomas Edison State University: Undergraduate Certificate in Gas Distribution

International Fire Code

Union Brew

March 28, 2025
mike@standardsmichigan.com
, ,
No Comments

https://www.accuweather.com/en/it/trieste/213117/weather-forecast/213117?city=trieste

 

Student Experience | University of Liverpool

https://www.ljmu.ac.uk/

Click image to access livestream

Masterplan Estate Strategy 2026+

Related:

Scouser District Energy

A Recipe for an Australian Standard

March 28, 2025
mike@standardsmichigan.com
No Comments

 

Three ways Artificial Intelligence is transforming agriculture and food

 

Farmer Wants a Wife

Sheep and Wool

Ceramic Plumbing Fixtures

March 28, 2025
mike@standardsmichigan.com
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send mike@standardsmichigan.com a request for subscription details.

The “Sugaring” Season

March 28, 2025
mike@standardsmichigan.com
, , , , , ,
No Comments

Standards Vermont

Vermont is the largest producer of maple syrup in the United States, and the maple syrup industry is an important part of the state’s economy and culture. Vermont maple syrup is renowned for its high quality and distinctive flavor, and many people around the world seek out Vermont maple syrup specifically.

The maple syrup industry in Vermont is primarily made up of small-scale family farms, where maple sap is collected from sugar maple trees in early spring using a process called “sugaring.” The sap is then boiled down to produce pure maple syrup, which is graded according to its color and flavor. Vermont maple syrup is graded on a scale from Grade A (lighter in color and milder in flavor) to Grade B (darker in color and more robust in flavor).

The Vermont maple syrup industry is heavily regulated to ensure quality and safety, and the state has strict standards for labeling and grading maple syrup. In addition to pure maple syrup, many Vermont maple producers also make maple candy, maple cream, and other maple products.

University of Vermont Facilities Management

Vermont

Animal domestication

March 27, 2025
mike@standardsmichigan.com
, , , ,
No Comments

Ireland

Related:

Learning from the Wild Things

Dogs and Agriculture

Laboratories 400

March 27, 2025
mike@standardsmichigan.com
,
No Comments

ASHRAE Laboratory Design Guide, Second Edition

Classification of Laboratory Ventilation Design Levels

ISO/DIS 22544Laboratory design — Vocabulary (Under Development)

The Haldane Principle § “On Being the Right Size” J.B.S Haldane

We break down our coverage of laboratory safety and sustainability standards thus:

Laboratories 100 covers a broad overview of the safety and sustainability standards setting catalogs; emphasis on titles incorporated by reference into public safety laws.

Laboratories 200 covers laboratory occupancies primarily for teaching

Laboratories 300 covers laboratories in healthcare clinical delivery.

Laboratories 400 covers laboratories for scientific research; long since creating the field of environmental health and safety in higher education and a language (and acronyms of its own: CSHEMA)

In the most recent fiscal year, the National Institutes of Health had a budget of approximately $47.7 billion. A substantial portion of this budget is allocated to research at colleges and universities. Specifically, about 83% of NIH’s funding, which translates to roughly $39.6 billion, is awarded for extramural research. This funding is distributed through nearly 50,000 competitive grants to more than 2,500 universities, medical schools, and other research institutions across the United States​

The cost to build a “standard” classroom runs about $150 to $400 per square foot; a scientific research laboratory about $400 to $1200 per square foot.

Laboratories 500 is broken out as a separate but related topic and will cover conformity and case studies that resulted in litigation.  Both Laboratories 200 and 400 will refer to the cases but not given a separate colloquium unless needed.

At the usual time.  Use the login credentials at the upper right of our home page.


Standards February: Discovery & Invention

 

February 27, 2023

Research findings related to laboratory safety:

  1. Identifying and Evaluation Hazards in Research Laboratories
  2. “Evaluating the Efficacy of Laboratory Hazard Assessment Tools for Risk Management in Academic Research Laboratories” – This study from 2021 evaluated the effectiveness of various laboratory hazard assessment tools in academic research laboratories, and found that a combination of tools and approaches may be most effective for managing risks.
  3. “A Framework for Assessing Laboratory Safety Culture in Academic Research Institutions” – This 2020 study developed a framework for assessing laboratory safety culture in academic research institutions, which can help identify areas for improvement and promote a culture of safety.
  4. “Enhancing Laboratory Safety Culture Through Peer-to-Peer Feedback and Coaching” – This 2020 study found that peer-to-peer feedback and coaching can be an effective way to enhance laboratory safety culture, as it encourages open communication and feedback among colleagues.
  5. “Assessing the Effectiveness of Laboratory Safety Training Programs for Graduate Students” – This 2019 study evaluated the effectiveness of laboratory safety training programs for graduate students, and found that interactive and hands-on training was more effective than traditional lecture-based training.
  6. “Improving Laboratory Safety Through the Use of Safety Climate Surveys” – This 2018 study found that safety climate surveys can be an effective way to improve laboratory safety, as they provide insight into employee perceptions of safety culture and identify areas for improvement.
  7. Chemistry laboratory safety climate survey (CLASS): A tool for measuring students’ perceptions of safety

These recent research findings suggest that laboratory safety culture can be improved through a variety of approaches, including hazard assessment tools, peer-to-peer feedback and coaching, interactive training, and safety climate surveys.  Some of these findings will likely set the standard of care we will see in safety standards incorporated by reference into public safety regulations. 

Related:




November 29, 2021

Today we break down the literature setting the standard of care for the safety and sustainability of instruction and research laboratories in the United States specifically; and with sensitivity to similar enterprises in research universities elsewhere in the world.  We will drill into the International Code Council Group A titles which are receiving public input until January 10, 2022.

Join us by clicking the Daily Colloquia link at the upper right of our home page.

The original University of Michigan Workspace for [Issue 13-28] in which we advocate for risk-informed eyewash and emergency shower testing intervals has been upgraded to the new Google Sites platform: CLICK HERE

Related:


September 20, 2021

 

Today we break down the literature setting the standard of care for the safety and sustainability of instruction and research laboratories in the United States specifically; and with sensitivity to similar enterprises in research universities elsewhere in the world.

Classification of Laboratory Ventilation Design Levels – ASHRAE

ASHRAE Laboratory Design Guide 

Join us by clicking the Daily Colloquia link at the upper right of our home page.


May 10, 2021

Today we will poke through a few proposals for the 2021/222 revision of the International Code Council’s Group A Codes.  For example:

IFC § 202 et. al | F175-21| Healthcare Laboratory Definition

IBC § 202 et. al | E7-21| Collaboration Room

IBC § 1110.3 et. al | E143-21| Medical scrub sinks, art sinks, laboratory sinks

. . .

IFGC § 403, etl al| G1-21| Accessibility of fuel gas shut off valves

IBC § 307 Tables  | G36-21| For hazardous materials in Group B higher education laboratory occupancies

IBC § 302.1 et. al |  G121-21| Separation from other nonlaboratory areas for higher education laboratories

And about 20 others we discussed during the Group A Hearings ended last week.  We will have until July 2nd to respond.  The electrotechnology proposals will be referred to the IEEE Education & Healthcare Facilities Committee which is now preparing responses to this compilation by Kimberly Paarlberg.


March 15, 2021

Today we break down action in the literature governing the safety and sustainability of instruction and research laboratories in the United States specifically; but also with sensitivity to similar enterprises in research universities elsewhere in the world.  “Everyone” has an iron in this fire:

International Building Code Chapter 38: Higher Education Laboratories

ASCE Structural Engineering Institute (so that the foundations and “bone structure” of laboratories survive earthquakes, floods and other Force majeure mayhem)

National Electrical Code Chapter 5: Special Occupancies

ASHRAE Laboratory Design Guide

NFPA 45  Standard on Fire Protection for Laboratories Using Chemicals

IEEE Electrical Safety in Academic Laboratories

…and ISEA, AWWA, AIHA, BIFMA, CLSI, LIA, IAPMO, NSF, UL etc. among ANSI accredited standards developing organizations…

..and addition to NIST, Federal code of Regulations Title 29, NIH, CDC, FEMA, OSHA etc

…and state level public health regulations; some of them adapted from OSHA safety plans

Classroom and offices are far simpler.  Laboratories are technically complicated and sensitive area of concern for education communities not only responsible for the safety of instructional laboratories but also global communities with faculty and staff that must simultaneously collaborate and compete.  We have been tip-toeing through the technical and political minefields for nearly 20 years now and have had some modest success that contributes to higher safety and lower costs for the US education community.

Colloquium open to everyone.  Use the login credentials at the upper right of our home page.

Source: NACUBO.ORG


More

Occupational Safety and Health Administration

National Institutes of Health

Centers for Disease Control and Prevention

NFPA Fire Code requirements for laboratories at colleges and universities

Clinical and Laboratory Standards Institute

National Conference of Standards Laboratories

National Institute of Standards and Technology/Information Technology Laboratory

The NELAC Institute

Laboratory Safety Guidance

Biosafety Cabinetry

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content