LIVE: KRNU 90.3 FM

Loading
loading...

WMHW-FM

September 12, 2024
[email protected]

No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.

Wire

September 12, 2024
[email protected]
No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.

Federal architecture

September 12, 2024
[email protected]

No Comments

This content is accessible to paid subscribers. To view it please enter your password below or send [email protected] a request for subscription details.

Laboratories 400

September 12, 2024
[email protected]
,
No Comments

ASHRAE Laboratory Design Guide, Second Edition

Classification of Laboratory Ventilation Design Levels

The Haldane Principle § “On Being the Right Size” J.B.S Haldane

We break down our coverage of laboratory safety and sustainability standards thus:

Laboratories 100 covers a broad overview of the safety and sustainability standards setting catalogs; emphasis on titles incorporated by reference into public safety laws.

Laboratories 200 covers laboratory occupancies primarily for teaching

Laboratories 300 covers laboratories in healthcare clinical delivery.

Laboratories 400 covers laboratories for scientific research; long since creating the field of environmental health and safety in higher education and a language (and acronyms of its own: CSHEMA)

In the most recent fiscal year, the National Institutes of Health had a budget of approximately $47.7 billion. A substantial portion of this budget is allocated to research at colleges and universities. Specifically, about 83% of NIH’s funding, which translates to roughly $39.6 billion, is awarded for extramural research. This funding is distributed through nearly 50,000 competitive grants to more than 2,500 universities, medical schools, and other research institutions across the United States​

The cost to build a “standard” classroom runs about $150 to $400 per square foot; a scientific research laboratory about $400 to $1200 per square foot.

Laboratories 500 is broken out as a separate but related topic and will cover conformity and case studies that resulted in litigation.  Both Laboratories 200 and 400 will refer to the cases but not given a separate colloquium unless needed.

At the usual time.  Use the login credentials at the upper right of our home page.


February 27, 2023

Research findings related to laboratory safety:

  1. Identifying and Evaluation Hazards in Research Laboratories
  2. “Evaluating the Efficacy of Laboratory Hazard Assessment Tools for Risk Management in Academic Research Laboratories” – This study from 2021 evaluated the effectiveness of various laboratory hazard assessment tools in academic research laboratories, and found that a combination of tools and approaches may be most effective for managing risks.
  3. “A Framework for Assessing Laboratory Safety Culture in Academic Research Institutions” – This 2020 study developed a framework for assessing laboratory safety culture in academic research institutions, which can help identify areas for improvement and promote a culture of safety.
  4. “Enhancing Laboratory Safety Culture Through Peer-to-Peer Feedback and Coaching” – This 2020 study found that peer-to-peer feedback and coaching can be an effective way to enhance laboratory safety culture, as it encourages open communication and feedback among colleagues.
  5. “Assessing the Effectiveness of Laboratory Safety Training Programs for Graduate Students” – This 2019 study evaluated the effectiveness of laboratory safety training programs for graduate students, and found that interactive and hands-on training was more effective than traditional lecture-based training.
  6. “Improving Laboratory Safety Through the Use of Safety Climate Surveys” – This 2018 study found that safety climate surveys can be an effective way to improve laboratory safety, as they provide insight into employee perceptions of safety culture and identify areas for improvement.
  7. Chemistry laboratory safety climate survey (CLASS): A tool for measuring students’ perceptions of safety

These recent research findings suggest that laboratory safety culture can be improved through a variety of approaches, including hazard assessment tools, peer-to-peer feedback and coaching, interactive training, and safety climate surveys.  Some of these findings will likely set the standard of care we will see in safety standards incorporated by reference into public safety regulations. 

Related:




November 29, 2021

Today we break down the literature setting the standard of care for the safety and sustainability of instruction and research laboratories in the United States specifically; and with sensitivity to similar enterprises in research universities elsewhere in the world.  We will drill into the International Code Council Group A titles which are receiving public input until January 10, 2022.

Join us by clicking the Daily Colloquia link at the upper right of our home page.

The original University of Michigan Workspace for [Issue 13-28] in which we advocate for risk-informed eyewash and emergency shower testing intervals has been upgraded to the new Google Sites platform: CLICK HERE

Related:


September 20, 2021

 

Today we break down the literature setting the standard of care for the safety and sustainability of instruction and research laboratories in the United States specifically; and with sensitivity to similar enterprises in research universities elsewhere in the world.

Classification of Laboratory Ventilation Design Levels – ASHRAE

ASHRAE Laboratory Design Guide 

Join us by clicking the Daily Colloquia link at the upper right of our home page.


May 10, 2021

Today we will poke through a few proposals for the 2021/222 revision of the International Code Council’s Group A Codes.  For example:

IFC § 202 et. al | F175-21| Healthcare Laboratory Definition

IBC § 202 et. al | E7-21| Collaboration Room

IBC § 1110.3 et. al | E143-21| Medical scrub sinks, art sinks, laboratory sinks

. . .

IFGC § 403, etl al| G1-21| Accessibility of fuel gas shut off valves

IBC § 307 Tables  | G36-21| For hazardous materials in Group B higher education laboratory occupancies

IBC § 302.1 et. al |  G121-21| Separation from other nonlaboratory areas for higher education laboratories

And about 20 others we discussed during the Group A Hearings ended last week.  We will have until July 2nd to respond.  The electrotechnology proposals will be referred to the IEEE Education & Healthcare Facilities Committee which is now preparing responses to this compilation by Kimberly Paarlberg.


March 15, 2021

Today we break down action in the literature governing the safety and sustainability of instruction and research laboratories in the United States specifically; but also with sensitivity to similar enterprises in research universities elsewhere in the world.  “Everyone” has an iron in this fire:

International Building Code Chapter 38: Higher Education Laboratories

ASCE Structural Engineering Institute (so that the foundations and “bone structure” of laboratories survive earthquakes, floods and other Force majeure mayhem)

National Electrical Code Chapter 5: Special Occupancies

ASHRAE Laboratory Design Guide

NFPA 45  Standard on Fire Protection for Laboratories Using Chemicals

IEEE Electrical Safety in Academic Laboratories

…and ISEA, AWWA, AIHA, BIFMA, CLSI, LIA, IAPMO, NSF, UL etc. among ANSI accredited standards developing organizations…

..and addition to NIST, Federal code of Regulations Title 29, NIH, CDC, FEMA, OSHA etc

…and state level public health regulations; some of them adapted from OSHA safety plans

Classroom and offices are far simpler.  Laboratories are technically complicated and sensitive area of concern for education communities not only responsible for the safety of instructional laboratories but also global communities with faculty and staff that must simultaneously collaborate and compete.  We have been tip-toeing through the technical and political minefields for nearly 20 years now and have had some modest success that contributes to higher safety and lower costs for the US education community.

Colloquium open to everyone.  Use the login credentials at the upper right of our home page.

Source: NACUBO.ORG


More

Occupational Safety and Health Administration

National Institutes of Health

Centers for Disease Control and Prevention

NFPA Fire Code requirements for laboratories at colleges and universities

Clinical and Laboratory Standards Institute

National Conference of Standards Laboratories

National Institute of Standards and Technology/Information Technology Laboratory

The NELAC Institute

Laboratory Safety Guidance

Biosafety Cabinetry

 

Vigilante Coffee

September 12, 2024
[email protected]

No Comments

Our Story

Big Ten Conference Inc 501(c)(3) | Net Assets: $246.918M

University of MarylandThe Rossborough Inn


What Are People Wearing?

September 12, 2024
[email protected]
, , , , , , , ,
No Comments

“What you wear is how you present yourself to the world, especially today,

when human contacts are so quick. Fashion is instant language.”

Miuccia Prada

May Ball


University of Cambridge Estates Division

Laboratory Fume Hood Safety

September 12, 2024
[email protected]

No Comments

Public Review Drafts

A significant amount of research in the United States is conducted in research universities — over $70 billion annually, according to the National Science Foundation (LEARN MORE HERE).  Unlike private industry, where facilities can be located away from population centers, many campus laboratories are located in dense populated areas because researchers enjoy their work in a lively campus setting.   Keeping these facilities safe and sustainable is challenging anywhere but especially so in a setting where education and research takes place in close proximity.

One of the core documents for leading practice is  ASHRAE 110 — Method of Testing Performance of Laboratory Fume Hoods.  Keep in mind that in the emergent #SmartCampus a fume hood is part of an integrated system that not only includes environmental air systems but electrical, telecommunication, and fire safety systems.

ASHRAE 110 provides a starting point for assessing a wide variety of factors that influence the performance of laboratory fume hoods. The ability of a laboratory hood to provide protection for the user at the face of the hood is strongly influenced by the aerodynamic design of the hood, the method of operation of the hood, the stability of the exhaust ventilation system, the supply ventilation of the laboratory room, the work practices of the user, and other features of the laboratory in which it is installed. Therefore, there is a need for a test method that can be used to evaluate the performance including the influences of the laboratory arrangement and its ventilation system.

From the project prospectus:

Purpose.  This standard specifies a quantitative and qualitative test method for evaluating fume containment of laboratory fume hoods.

Scope: his method of testing applies to conventional, bypass, auxiliary-air, and VAV laboratory fume hoods.  (2) This method of testing is intended primarily for laboratory and factory testing but may also be used as an aid in evaluating installed performance.

The 2016 revision is the current version; made the following improvements to the 1995 edition:

• The test procedures now require digital collection of data rather than allowing manual data collection.
• Some modifications have been made to the test procedure.  These modifications were made based on the experience of the committee members or to clarify statements in the 1995 edition of the standard.
• Informative Appendix A, which provides explanatory information, has been expanded.
• Informative Appendix B, a new nonmandatory section, provides guidance to anyone using the standard as a diagnostic tool in investigating the cause of poor hood performance.

ASHRAE has recently upgraded its public participation platform; available in the link below:

Public Review Draft Standards / Online Comment Database

ASHRAE 110 is not a continuous maintenance document (that can change in 30 to 90 day intervals).  We encourage our colleagues involved in university-affiliated research enterprises who have an idea, data and/or anecdotes to key in their idea, data or anecdote — particularly faculty and students.  While we recognize that conformance professionals (i.e. “inspectors”) have a very informed point of view about safety; they may not place ideas for lower costs at the top of their agenda.   It is a fine line we must hew in the education industry — respecting the experience and priorities of risk managers while at the same coming up with ideas that make laboratories safer, simpler, lower-cost and longer-lasting that may reduce their billable hours.

We find that environmental air safety goals often compete with fire safety goals and both compete with sustainability goals.   Conversations about the optimal approach to converting to variable volume fume hood systems from constant flow are common:

LINK TO ASHRAE VARIABLE VOLUME FUME HOOD BIBLIOGRAPHY

As an ANSI accredited continuous-maintenance standards developer ASHRAE technical committees receive public comment at any time; though action on revising the standard must follow the accredited process.   State level adaptations  — with respect to technical specifics or compliance paths or both — are always possible.  As explained elsewhere, Standards Michigan generally advocates for scalable, site specific solutions to laboratory safety system operation and maintenance, though we understand that enforcement and compliance interests prefer bright-line, single-point solutions that are easy to enforce.

All ASHRAE standards are on the agenda of our Mechanical Engineering teleconference.  See our CALENDAR for our next conversation on this subject; open to everyone.

Mechanical Engineering Codes and Standards

 

Category: Mechanical

Colleagues: Richard Robben, Mark Schuefele, Larry Spielvogel

 

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content