Case Study: Central Utilities Building

Loading
loading...

Case Study: Central Utilities Building

October 29, 2025
mike@standardsmichigan.com
No Comments

Net Position 2025: $814,610 (000) Page 7

Ontario

Interconnected Electric Power Production Sources “Microgrids”

October 29, 2025
mike@standardsmichigan.com

No Comments

“Landscape with a Farm House and Windmill” (1680) / Jacob Isaaksz van Ruisdael

We have always taken a forward-looking approach to the National Electrical Code (NEC) because there is sufficient supply of NEC instructors and inspectors and not enough subject matter experts driving user-interest ideas into it.  Today we approach the parts of the 2023 NEC that cover wiring safety for microgrid systems; a relatively new term of art that appropriates safety and sustainability concepts that have existed in electrotechnology energy systems for decades.

Turn to Part II of Article 705 Interconnected Electric Power Production Sources:

Free Access 2023 National Electrical Code

You will notice that microgrid wiring safety is a relatively small part of the much larger Article 705 Content.   There were relatively minor changes to the 2017 NEC in Section 705.50  — but a great deal of new content regarding Microgrid Interconnection Devices, load side connections, backfeeding practice and disconnecting means — as can be seen in the transcripts of Code-Making Panel 4 action last cycle:

Code‐Making Panel 4 Public Input Report (692 Pages)

Code-Making Panel 4 Public Comment Report (352 Pages)

Keep in mind that the NEC says nothing (or nearly very little, in its purpose stated in Section 90.2) about microgrid economics or the life cycle cost of any other electrical installation.  It is the claim about economic advantages of microgrids that drive education facility asset management and energy conservation units to conceive, finance, install, operate and — most of all — tell the world about them.

In previous posts we have done our level best to reduce the expectations of business and finance leaders of dramatic net energy savings with microgrids — especially on campuses with district energy systems.  Microgrids do, however, provide a power security advantage during major regional contingencies — but that advantage involves a different set of numbers.

Note also that there is no user-interest from the education facility industry — the largest non-residential building construction market in the the United States — on Panel 4.   This is not the fault of the NFPA, as we explain in our ABOUT.

The 2023 NEC was released late last year.

 

The 2026 revision cycle is in full swing with public comment on the First Draft receivable until August 24, 2024.  Let’s start formulating our ideas using the 2023 CMP-4 transcripts.   The link below contains a record of work on the 2023 NEC:

2026 National Electrical Code Workspace

We collaborate with the IEEE Education & Healthcare Facility Committee which meets online 4 times per month in European and American time zones.  Since a great deal of the technical basis for the NEC originates with the IEEE we will also collaborate with other IEEE professional societies.

Mike Anthony’s father-in-law and son maintaining the electrical interactive system installed in the windmill that provides electricity to drive a pump that keeps the canal water at an appropriate level on the family farm near Leeuwarden, The Netherlands.

Issue: [19-151]

Category: Electrical, Energy

Colleagues: Mike Anthony, Jim Harvey, Kane Howard, Jose Meijer

Archive / Microgrids


 

Energy Standard for Data Centers

October 29, 2025
mike@standardsmichigan.com
, ,
No Comments

Consulting-Specifying Engineer (March 4, 2025): Why and how to adopt the IECC for energy-efficient designs

 

2024 Update to ASHRAE Position Statements

List of Titles, Scopes and Purposes of the ASHRAE Catalog

Public Review Draft Standards

The parent title of this standard is ASHRAE Standard 90.1: Energy Standard for Buildings Except Low-Rise Residential Buildings  and is continually under revision; frequently appearing in electrical engineering design guidelines, construction specifications, commissioning and O&M titles in our industry and others.

ASHRAE 90.4 defines an alternate compliance path, specific to data centers, while the compliance requirements for “non-data center” components are contained in ASHRAE 90.1 .  The 90.4 structure also streamlines the ongoing maintenance process as well ensures that Standards 90.1 and 90.4 stay in their respective lanes to avoid any overlap and redundancies relating to the technical and administrative boundaries.  Updates to ASHRAE 90.1 will still include the alternate compliance path defined in ASHRAE 90.4. Conversely the 2022 Edition of 90.4-2022 refers to ASHRAE 90.1-2022; cross-referencing one another synchronously

Links to noteworthy coverage from expert agencies on the 2022 revisions:

Addendum g modifies Sections 3 and 6 to support the regulation of process heat and process ventilation

HPC Data Center Cooling Design Considerations

ASHRAE standard 90.4 updates emphasize green energy

ASHRAE updated its standard for data centers

How to Design a Data Center Cooling System for ASHRAE 90.4

Designing a Data Center with Computer Software Modeling

This title resides on the standing agenda of our Infotech 400 colloquium; hosted several times per year and as close coupled with the annual meetings of ASHRAE International as possible.  Technical committees generally meet during these meetings make decisions about the ASHRAE catalog.  The next all committee conference will be hosted January 20-24, 2024 in Chicago.  As always we encourage education industry facility managers, energy conservation workgroups and sustainability professionals to participate directly in the ASHRAE consensus standard development process.  It is one of the better facilities out there.

Start at ASHRAE’s public commenting facility:

Online Standards Actions & Public Review Drafts

Energy Standard for *Sites* and Buildings


Update: May 30, 2023

Proposed Addendum g makes changes to definitions were modified in section 3 and mandatory language in Section 6 to support the regulation of process heat and process ventilation was moved in the section for clarity. Other changes are added based on comments from the first public review including changes to informative notes.

Consultation closes June 4th


Update: February 10, 2023

The most actively managed consensus standard for data center energy supply operating in education communities (and most others) is not published by the IEEE but rather by ASHRAE International — ASHRAE 90.4 Energy Standard for Data Centers (2019).  It is not required to be a free access title although anyone may participate in its development.   It is copyrighted and ready for purchase but, for our purpose here, we need only examine its scope and purpose.   A superceded version of 90.4 is available in the link below:

Third ISC Public Review Draft (January 2016)

Noteworthy: The heavy dependence on IEEE power chain standards as seen in the Appendix and Chapter 8.  Recent errata are linked below:

https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20errata/standards/90.4-2016errata-5-31-2018-.pdf

https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20errata/standards/90.4-2019errata-3-23-2021-.pdf

We provide the foregoing links for a deeper dive “into the weeds”.  Another addendum has been released for consultation; largely administrative:

ASHRAE 90.4 | Pages 60-61 | Consultation closes January 15, 2023.

It is likely that the technical committee charged with updating this standard are already at work preparing an updated version that will supercede the 2019 Edition.  CLICK HERE for a listing of Project Committee Interim Meetings.

We maintain many titles from the ASHRAE catalog on the standing agenda of our Mechanical, Energy 200/400, Data and Cloud teleconferences.   See our CALENDAR for the next online meeting; open to everyone.


Originally posted Summer 2020.

 

ASHRAE International has released four new addenda to its energy conservation consensus document ASHRAE 90.4-2016 Energy Standard for Data Centers.  This document establishes the minimum energy efficiency requirements of data centers for design and construction, for the creation of a plan for operation and maintenance and for utilization of on-site or off-site renewable energy resources.

It is a relatively new document more fully explained in an article published by ASHRAE in 2016 (Click here).   The addenda described briefly:

Addendum a  – clarifies existing requirements in Section 6.5 as well as introduce new provisions to encourage heat recovery within data centers.

Addendum b  – clarifies existing requirements in Sections 6 and 11 and to provide guidance for taking credit for renewable energy systems.

Addendum d  – a response to a Request for Interpretation on the 90.4 consideration of DieselRotary UPS Systems (DRUPS) and the corresponding accounting of these systems in the Electrical Loss Component (ELC). In crafting the IC, the committee also identified several marginal changes to 90.4 definitions and passages in Section 8 that would add further clarity to the issue. This addendum contains the proposed changes for that aim as well as other minor changes to correct spelling or text errors, incorporate the latest ELC values into Section 11, and to refresh information in the Normative Reference.

Addendum e adds language to Section 11 intended to clarify how compliance with Standard 90.4 can be achieved through the use of shared systems.

Comments are due September 6th.   Until this deadline you may review the changes and comment upon them by by CLICKING HERE

Universitat de Barcelona

 

Proposed Addendum g

Education facility managers, energy conservation workgroups and sustainability professionals are encouraged to participate directly in the ASHRAE standard development process.   Start at ASHRAE’s public commenting facility:

Online Standards Actions & Public Review Drafts

The ASHRAE catalog is a priority title in our practice.  This title appears on the standing agenda of our Infotech sessions.  See our CALENDAR for the next online meeting; open to everyone.

"One day ladies will take their computers for walks in the park and tell each other, "My little computer said such a funny thing this morning" - Alan Turing

Issue: [12-54]

Category: Telecommunications, Infotech, Energy

Colleagues: Mike Anthony, Robert G. Arno, Neal Dowling, Jim Harvey, Mike Hiler, Robert Schuerger, Larry Spielvogel

Workspace / ASHRAE

 

I-Code Group B Committee Action Hearings

October 29, 2025
mike@standardsmichigan.com
No Comments

Committee Action Hearings Webcasts – Group B #1


Code Development Schedule

Complete Monograph (2630 Pages)

Voting Results

IBC Rebuttal on G153-25 Performance Electrical Design

(response with hyperlinks to supporting research)

 

Partial listing.  We have until July 15th to comment on committee action

Our proposal G153-25: Page 754

Michigan Modular G195-25: Page 859

“Clinical Need” definition for enhanced security: Page 765

“Electric Vehicle Charger” definition by the  National Parking Association/Parking Consultant’s Council: Page 457

“EV Charging Space” definition: Page 458

“EV Supply Equipment” definition: Page 460

ADM20-25 Authority of building official in natural disasters and high hazard regions, p141

ASM3-25 Electrical equipment re-use, p195

G2-25.  New definition for Animal Housing Facilities, p438

S57-25.  Quite a bit of back and forth on wind and PV “farms, p1053, et. al (“Wind and solar farms are different from animal and produce farms” — Mike Anthony)

G143-25 Lighting Section 1204L remote rooms, windowless rooms, University of Texas Austin student accommodation costs, p. 737-

PM31-25 Housekeeping and sanitation in owned property as law, p1794

PM50-25, Sleeping units to be private, p.1829

RB146-25.  Energy storage systems installed in garages, requirements for physical protection, p. 2195

RB144-25, Load capacity ratings and compliance with NFPA 855, p. 2186

RB143-25, Working roof walking access around solar panels, p. 2180

SP1-25 New definition of base flood elevation for purpose of correlating requirements for electrical safety, et. al, p. 2578

Landing Page for Group B 2025

cdpACCESS 

Link to Track 1 and Track 2 Webcast

Performance-Based Electrical Power Chain Design

Performance Monitoring for Power Plants

October 29, 2025
mike@standardsmichigan.com

No Comments

“A View of Murton Colliery near Seaham, County Durham” (1843) / John Wilson Carmichael

The American Society of Mechanical Engineers (ASME) has registered a Project Initiation Notification with ANSI to launch a revision to its consensus product ASME PM-202x, Performance Monitoring for Power Plants.  This product should interest stakeholders in involved in college and universities with district energy plants — facility management staffs, consulting engineers, operations and maintenance staff.

From the project prospectus:

These Guidelines cover fossil-fueled power plants, gas-turbine power plants operating in combined cycle, and a balance-of-plant portion including interface with the steam supply system of nuclear power plants.  They include performance monitoring concepts, a description of various methods available, and means for evaluating particular applications.

Since the original publication of these Guidelines in 1993—then limited to steam power plants—the field of performance monitoring (PM) has gained considerable importance.  The lifetime of plant equipment has been improved, while economic demands have increased to extend it even further by careful monitoring.  The PM techniques themselves have also been transformed, largely by the emergence of electronic data acquisition as the dominant method of obtaining the necessary information.

These Guidelines present:

• “Fundamental Considerations”—of PM essentials prior to the actual application, so you enter fully appraised of all the requirements, potential benefits and likelihood of tradeoffs of the PM program. 

• “Program Implementation”—where the concepts of PM implementation, diagnostics and cycle interrelationships have been brought into closer conjunction, bringing you up-to-date with contemporary practice.

• “Case Studies / Diagnostic Examples”—from the large amount of experience and historical data that has been accumulated since 1993.

Intended for employees of power plants and engineers involved with all aspects of power production.

From ANSI’s PINS registry:

Project Need: This document is being developed in order to address performance monitoring and optimization techniques for different power generating facilities. The latest trends and initiatives in performance monitoring as well as practical case studies and examples will be incorporated.

Stakeholders: Designers, producers/manufacturers, owners, operators, consultants, users, general interest, laboratories, regulatory/government, and distributors.

This document will cover power generation facilities including steam generators, steam turbines, and steam turbine cycles (including balance of plant of nuclear facilities), gas turbines, and combined cycles. The guidelines include performance monitoring concepts, a description of various methods available, and means for evaluating particular applications.

No drafts open for public consultation at this time.   The PINS announcement was placed on October 11th*.   The PINS registry is a stakeholder mapping platform that identifies the beginning of a formal process that may interest other accredited, competitor standards developers.   Many ASME consensus products may be indirectly referenced in design guidelines and construction contracts with the statement “Conform to all applicable codes”

The landing page for the ASME standards development enterprise is linked below:

ASME C&S Connect

Note that you will need to set up a (free) account to access this and other ASME best practice titles.

We maintain all ASME consensus products on the standing agenda of our periodic Mechanical and Energy teleconferences.   See our CALENDAR for the next online meeting; open to everyone.

University of Michigan

Issue: [19-148]

Category: District Energy, Energy, Mechanical

Colleagues: Richard Robben, Larry Spielvogel


LEARN MORE:

ANSI Standards Action

Boiler & Pressure Vessel Code

Underground Electrotechnology

October 28, 2025
mike@standardsmichigan.com

No Comments

Best practice literature to be covered in our 11 AM session today are listed below.  These codes and standards ensure safety, reliability, and compliance for underground electrical and telecommunications installations:

2028 National Electrical Safety Code

  • National Electrical Code (NEC), NFPA 70
    • Relevance: The NEC, published by the National Fire Protection Association, is the primary standard for safe electrical installations in the U.S. Articles 300 (Wiring Methods), 310 (Conductors for General Wiring), and 230 (Services) cover underground wiring, including burial depths, conduit requirements, and direct-burial cables like Type UF and USE-2. For example, NEC 300.5 specifies minimum cover depths (e.g., 24 inches for direct-burial cables, 18 inches for PVC conduit).
    • Key Aspects: Rules for conductor protection, grounding, GFCI requirements, and conduit types (e.g., Schedule 80 PVC). Adopted by most U.S. jurisdictions with local amendments.

ANSI/TIA-568 Series (Commercial Building Telecommunications Cabling Standards)

  • Relevance: Governs low-voltage telecommunications cabling, including underground installations. TIA-568.2-D (Balanced Twisted-Pair) and TIA-568.3-D (Optical Fiber) specify performance requirements for cables like Cat6 and fiber optics, including maximum distances (e.g., 100 meters for twisted-pair).
  • Key Aspects: Ensures signal integrity, proper separation from high-voltage lines, and compliance for plenum or direct-burial-rated cables. Voluntary unless mandated by local codes.

IEEE 835 (Standard Power Cable Ampacity Tables)

  • Relevance: Provides ampacity ratings for underground power cables, critical for sizing conductors to prevent overheating.
  • Key Aspects: Includes data for direct-burial and ducted installations, considering soil thermal resistivity and ambient conditions. Often referenced alongside NEC for high-current applications.

UL 83 (Standard for Thermoplastic-Insulated Wires and Cables)

  • Relevance: Underwriters Laboratories standard for wires like THWN-2, commonly used in underground conduits. Ensures cables meet safety and performance criteria for wet locations.
  • Key Aspects: Specifies insulation durability, temperature ratings, and suitability for direct burial or conduit use. NEC requires UL-listed cables for compliance.

OSHA 1910.305 (Wiring Methods, Components, and Equipment)

  • Relevance: U.S. Occupational Safety and Health Administration standard for workplace electrical safety, including underground installations in industrial settings.
  • Key Aspects: Specifies approved wiring methods (e.g., armored cable, conduit) and enclosure requirements for underground cable trays or boxes. Focuses on worker safety during installation and maintenance.

CSA C22.1 (Canadian Electrical Code)

  • Relevance: Canada’s equivalent to the NEC, governing underground electrical installations. Similar to NEC but tailored to Canadian conditions and regulations.
  • Key Aspects: Defines burial depths, conduit types, and grounding requirements. For example, low-voltage cables (<30V) require 6-inch burial depth, like NEC.

Notes:

  • Regional Variations: Always consult local building authorities, as codes like the NEC or AS/NZS 3000 may have amendments. For example, some U.S. states reduce burial depths for GFCI-protected circuits (NEC 300.5).
  • Low-Voltage vs. High-Voltage: Standards like TIA-568 and ISO/IEC 11801 focus on low-voltage (e.g., <50V) telecommunications, while NEC and IEC 60364 cover both power and telecom.
  • Practical Compliance: Before installation, call 811 (U.S.) or equivalent to locate underground utilities, and obtain permits/inspections as required by local codes.
  • Critical Examination: While these standards are authoritative, they can lag behind technological advancements (e.g., new cable types like GameChanger exceeding TIA-568 limits). Over-reliance on minimum requirements may limit performance for cutting-edge applications.

Underground Electrotechnology General Conditions and Standard Details

Related:

1793-2012 – IEEE Guide for Planning and Designing Transition Facilities between Overhead and Underground Transmission Lines

The effect of an underground to overhead transition point on the specification of sheath voltage limiters in underground networks

Channel Characteristics Analysis of Medium Voltage Overhead and Mixed Overhead/Underground Cable Power Network

P81/D4, Jan 2025 – IEEE Draft Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System

Telecommunications Service Point

October 28, 2025
mike@standardsmichigan.com
No Comments

Today we get down in the weeds to examine the point of common coupling between a building and a telecommunication service provider.  In many cases the TSP is the university itself.

TIA-758-C (2021) Customer-Owned Outside Plant Telecommunications Infrastructure Standard. Covers direct-buried cable, conduit systems, duct banks, handholes, manholes, burial depths, warning tape, backfill, and route planning. → Includes minimum bend radii, pulling tensions, separation from power, and environmental protection.  Applies to copper, coaxial, and optical fiber in underground pathways.
TIA-590-B (2015) Standard for Physical Location and Protection of Below-Ground Fiber Optic Cable Plant.  Focuses on fiber optic underground protection. → Specifies burial depths, marker tape, locator wires, armored vs. non-armored cable, and risk mitigation (e.g., flood zones).

 

Higher education settlements often require a more diverse approach to designing and implementing ICT systems than that of a typical commercial building.  First of all, educational settlements are frequently one building. That means not only does the ICT infrastructure need to meet the varying demands of a specific building, but multiple buildings must all be integrated into one cohesive design.

In an environment of providing multifunctional spaces within one building, it is common to find a combination of commercial, industrial, data center, health care and entertainment environments within just a few buildings; hence our preference for the word “settlements” over the more widely used word “campus”.

TIA Standards

ANSI/TIA-568-C series: Telecommunications Cabling Standards.  Specifies the requirements for various aspects of structured cabling systems, including cabling components, installation, and testing.

TIA-569-B: Telecommunications Pathways and Spaces.  Provides guidelines for the design and installation of pathways and spaces for telecommunications cabling.

TIA-606-B: Administration Standard for Commercial Telecommunications Infrastructure.  Specifies administration practices for the telecommunications infrastructure of commercial buildings.

Our inquiry cuts across the catalogs of several other standards developers:

NEC (National Electrical Code).  NEC Article 800 specifically addresses the installation of communications circuits and equipment.

ISO/IEC 11801: Information technology — Generic cabling for customer premises.  Defines generic telecommunications cabling systems (structured cabling) used for various services, including voice and data.

IEEE 802.3: Ethernet Standards. Defines standards for Ethernet networks, which are commonly used for data communication in buildings.

UL 497: Protectors for Paired Conductor Communications Circuits. Addresses requirements for protectors used to safeguard communications circuits from overvoltage events.

GR-1089-CORE: Electromagnetic Compatibility and Electrical Safety. Published by Telcordia (now part of Ericsson), this standard provides requirements for the electromagnetic compatibility and electrical safety of telecommunications equipment.

FCC Part 68: Connection of Terminal Equipment to the Telephone Network. Outlines the technical requirements for connecting terminal equipment to the public switched telephone network in the United States.

Local building codes and regulations also include requirements for the installation of telecommunication service equipment.


Last update: October 12, 2019

All school districts, colleges, universities and university-affiliated health care systems have significant product, system, firmware and labor resources allocated toward ICT.   Risk management departments are attentive to cybersecurity issues.   All school districts, colleges, universities and university-affiliated health care systems have significant product, system, firmware and labor resources allocated toward ICT.

The Building Industry Consulting Service International (BICSI) is a professional association supporting the advancement of the ICT community.   This community is roughly divided between experts who deal with “outside-plant” systems and “building premise” systems on either side of the ICT demarcation point.   BICSI standards cover the wired and wireless spectrum of voice, data, electronic safety & security, project management and audio & video technologies.  Its work is divided among several committees:

BICSI Standards Program Technical Subcommittees

BICSI International Standards Program

BICSI has released for public review a new consensus document that supports education industry ICT enterprises:  BICSI N1 – Installation Practices for Telecommunications and ICT Cabling and Related Cabling Infrastructure.    You may obtain a free electronic copy from: standards@bicsi.org; Jeff Silveira, (813) 903-4712, jsilveira@bicsi.org.

Comments are due November 19th.

 

You may send comments directly to Jeff (with copy to psa@ansi.org).   This commenting opportunity will be referred to IEEE SCC-18 and the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in American and European time zones and will meet today.  CLICK HERE for login information.

Issue: [18-191]

Category: Telecommunications, Electrical, #SmartCampus

Colleagues: Mike Anthony, Jim Harvey, Michael Hiler

Readings:

What is Grounding and Bonding for Telecommunication Systems?

 

 


Adhiyamaan College of Engineering

 

 

 

 

 

 

 

 

Campus Electric Bulk Distribution

October 28, 2025
mike@standardsmichigan.com
No Comments

Today we will also cut through these transcripts:

2026 Code Panel 6 Public Input Report

2026 Code Panel 6 Public Comment Report

College and university campuses distribute electric energy in tranches of 10 to 250 megawatts; typically at voltages above 1000 VAC and are generally regarded as load-side services (or regulated utility customers). Two fairly stable sections of the National Electrical Code set the standard of care for these systems — Part III of Article 110 and Article 495.

We will examine them during today’s High Voltage Electric Service colloquium.

FREE ACCESS: 2023 National Electrical Code

We collaborate closely with the IEEE Education & Healthcare Facilities Committee which meets online 4 times per month in European and American time zones.  Ahead of the August 2024 public comment deadline we will examine transcripts of technical action on this topic:

2026 National Electrical Code Workspace

Installation Practices for ICT Cabling

October 28, 2025
mike@standardsmichigan.com
No Comments

BICSI G1-2023, Outside Plant Construction | Outside Plant Design Reference Manual (OSPDRM), 6th Edition

North Dakota State University

Information and communications technology (ICT) is a fast-moving economic space in which a mix of consensus and open-source standards form the broad contours of leading practice.   ICT standards tend to follow international developments — more so than, say, fire safety standards which are more familiar to education facility leadership.  All school districts, colleges, universities and university-affiliated health care systems have significant product, system, firmware and labor resources allocated toward ICT.   Risk management departments are attentive to cybersecurity issues.   All school districts, colleges, universities and university-affiliated health care systems have significant product, system, firmware and labor resources allocated toward ICT.

The Building Industry Consulting Service International (BICSI) is a professional association supporting the advancement of the ICT community.   This community is roughly divided between experts who deal with “outside-plant” systems and “building premise” systems on either side of the ICT demarcation point.   BICSI standards cover the wired and wireless spectrum of voice, data, electronic safety & security, project management and audio & video technologies.  Its work is divided among several committees:

BICSI Technical Information & Methods Subcommittee

BICSI International Standards Program

As of this date one title has been released for public consultation:

Building Information Modeling (BIM) Practices for Information Communication Technology Systems (Page 52)

The change is largely administrative.  Comments are due December 10th 

You may send comments directly to Jeff (with copy to psa@ansi.org).   This commenting opportunity will be referred to the IEEE Education & Healthcare Facilities Committee which meets 4 times monthly in American and European time zones and will meet today; typically on Tuesdays.  CLICK HERE for login information.

Issue: [18-191]

Category: Telecommunications, Electrical, #SmartCampus

Colleagues: Mike Anthony, Jim Harvey, Michael Hiler

Representative ICT Design Guidelines:

University of Tennessee Knoxville: Telecommunications Design and Installation Standards

Dennison University: Telecommunication Standards & Design Guidelines

University of Florida Information Technology: Telecommunications Standards


Adhiyamaan College of Engineering

2028 National Electrical Safety Code

October 28, 2025
mike@standardsmichigan.com
,
No Comments

IEEE Standards Association Public Review

Related Issues and Recent Research | Federal Legislation

“Rain in Charleston” 1951 Thomas Fransioli

This title sets the standard of care for construction, operation and maintenance of power and telecommunication infrastructure on the supply side of the point of common coupling. It is the first title to contemplate when weather disasters happen; with most public utilities bound to its best practice assertions by statute. Pre-print of Change Proposals for changes to appear in 2028 Edition will be available by 1 July 2025; with 24 March 2026 as the close date for comments on proposed changes.

Project Introduction for the 2028 Edition (2:39 minutes)

NESC 2028 Revision Schedule

Changes proposals for the Edition will be received until 15 May 2024

Proposals for the 2028 National Electrical Safety Code

Project Workspace: Update Data Tables in IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

Painting by Linda Kortesoja Klenczar

Federal Energy Regulatory Commission: Electrical Resource Adequacy

Relevant Research

NARUC Position on NFPA (NEC) and IEEE (NESC) Harmonization

The standard of care for electrical safety at high and low voltage is set by both the NEC and the NESC. There are gaps, however (or, at best “gray areas”) — the result of two technical cultures: utility power culture and building fire safety culture. There is also tradition. Local system conditions and local adaptation of regulations vary. Where there is a gap; the more rigorous requirement should govern safety of the public and workers.

The 2023 National Electrical Safety Code (NESC)– an IEEE title often mistaken for NFPA’s National Electrical Code (NEC) — was released for public use about six months ago; its normal 5-year revision cycle interrupted by the circumstances of the pandemic.   Compared with the copy cost of the NEC, the NESC is pricey, though appropriate for its target market — the electric utility industry.  Because the 2023 revision has not been effectively “field tested” almost all of the available support literature is, effectively, “sell sheets” for pay-for seminars and written by authors presenting themselves as experts for the battalions of litigators supporting the US utility industry.  Without the ability to sell the NESC to prospective “insiders” the NESC would not likely be commercial prospect for IEEE.   As the lawsuits and violations and conformance interests make their mark in the fullness of time; we shall see the 2023 NESC “at work”.

IEEE Standards Association: Additional Information, Articles, Tools, and Resources Related to the NESC

Office of the President: Economic Benefits of Increasing Electric Grid Resilience to Weather Outages

Research Tracks:

NARUC Resolution Urging Collaboration Between the National Electrical Safety Code and the National Electrical Code

Reliability of Communication Systems needed for the autonomous vehicle transformation

  1. Smart Grid Technologies:
    • Investigating advanced technologies to enhance the efficiency, reliability, and sustainability of power grids.
  2. Energy Storage Systems:
    • Researching and developing new energy storage technologies to improve grid stability and accommodate intermittent renewable energy sources.
  3. Distributed Generation Integration:
    • Studying methods to seamlessly integrate distributed energy resources such as solar panels and wind turbines into the existing power grid.
  4. Grid Resilience and Security:
    • Exploring technologies and strategies to enhance the resilience of power grids against cyber-attacks, natural disasters, and other threats.
  5. Demand Response Systems:
  6. Advanced Sensors and Monitoring:
    • Developing new sensor technologies and monitoring systems to enhance grid visibility, detect faults, and enable predictive maintenance.
  7. Power Quality and Reliability:
    • Studying methods to improve power quality, reduce voltage fluctuations, and enhance overall grid reliability.
  8. Integration of Electric Vehicles (EVs):
    • Researching the impact of widespread electric vehicle adoption on the grid and developing smart charging infrastructure.
  9. Grid Automation and Control:
    • Exploring advanced automation and control strategies to optimize grid operations, manage congestion, and improve overall system efficiency.
  10. Campus Distribution Grid Selling and Buying 

 


Relevant Technical Literature

IEC 60050 International Electrotechnical Vocabulary (IEV) – Part 601: Generation, transmission and distribution of electricity | April 16

Recommended Practice for Battery Management Systems in Energy Storage Applications | Comments Due March 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

 

Standards:

Presentation | FERC-NERC-Regional Entity Joint Inquiry Into Winter Storm Elliott

IEEE Guide for Joint Use of Utility Poles with Wireline and/or Wireless Facilities

NESC Rule 250B and Reliability Based Design

NESC Requirements (Strength and Loading)

Engineering Analysis of Possible Effects of 2017 NESC Change Proposal to Remove 60′ Exemption

National Electrical Safety Code Workspace


Joint Use of Electric Power Transmission & Distribution Facilities and Equipment

A Framework to Quantify the Value of Operational Resilience for Electric Power Distribution Systems

August 14, 2003 Power Outage at the University of Michigan

Technologies for Interoperability in Microgrids for Energy Access


National Electrical Safety Code: Revision Cycles 1993 through 2023

 


February 24, 2023

The new code goes into effect 1 February 2023, but is now available for access on IEEE Xplore! Produced exclusively by IEEE, the National Electrical Safety Code (NESC) specifies best practices for the safety of electric supply and communication utility systems at both public and private utilities.  The bibliography is expanding rapidly:

NESC 2023: Introduction to the National Electrical Safety Code

NESC 2023: Rule Changes

NESC 2023Safety Rules for Installation and Maintenance of Overhead Electric Supply

NESC 2023Safety Rules for the Installation and Maintenance of Underground Electric Supply and Communication Lines

NESC 2023: Rules for Installation and Maintenance of Electric Supply Stations

IEEE Digital Library

Grid Edge Visibility: Gaps and a road map


October 31, 2022

The IEEE NESC technical committee has released a “fast track” review of proposed changes to fault-managed power system best practice:

CP5605 Provides a definition of new Fault Managed Power System (FMPS) circuits used for the powering of
communications equipment clearly defines what constitutes a FMPS circuit for the purposes of application of the NESC
Rules of 224 and 344
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXtAAAAADhMnPs

CP5606 Provides new definitions of Communication Lines to help ensure that Fault Managed Power Systems (FMPS)
circuits used for the exclusive powering of communications equipment are clearly identified as communications lines
and makes an explicit connection to Rule 224B where the applicable rules for such powering circuits are found.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXpAAAAAFfvWIs

CP5607 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXuAAAAAEEt3p4

CP5608 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXvAAAAAGrzyeI

We refer them to the IEEE Education & Healthcare Facilities Committee for further action, if any.

 


August 5, 2022

We collaborate closely with the IEEE Education & Healthcare Facilities Committee (IEEE E&H) to negotiate the standard of care for power security on the #SmartCampus  since many campus power systems are larger than publicly regulated utilities.  Even when they are smaller, the guidance in building the premise wiring system — whether the premise is within a building, outside the building (in which the entire geography of the campus footprint is the premise), is inspired by IEEE Standards Association administrated technical committees.

Northeast Community College | Norfolk, Nebraska

Today we begin a list of noteworthy changes to be understood in the next few Power colloquia.  See our CALENDAR for the next online meeting.

  1. New rules 190 through 195 cover photovoltaic generating stations.  Rule 116c adds an exception for short lengths of insulated power cables and short-circuit protection if the situation involves fewer than 1,000 volts.
  2. Rule 320B has been revised to clarify separations that apply to communications and supply in different conduit systems.
  3. Table 410-4 is based on the latest arc flash testing on live-front transformers.
  4. Rule 092A adds an exception allowing protection, control, and safety battery systems to not be grounded.
  5. Rules 234 B1, C1, D1 were revised to better present vertical and horizontal wind clearances, and to coordinate requirements with the new Table 234-7.
  6. Rule 120A was revised to provide correction factors for clearances on higher elevations.
  7. Table 253-1 has been revised to reduce the load factor for fiber-reinforced polymer components under wire tension—including dead ends—for Grade C construction.
  8. Rule 410A now requires a specific radio-frequency safety program for employees who might be exposed.
  9. In the Clearances section, as well as in the specification of the Grade of Construction in Table 242-1, the Code further clarifies the use of non-hazardous fiber optic cables as telecom providers continue to expand their networks.
  10. Revisions in the Strength & Loading sections include modified Rule 250C, which addresses extreme wind loading for overhead lines. Two wind maps are now provided instead of the previous single one. A map for Grade B, the highest grade of construction, with a Mean Recurrence Interval (MRI) of 100 years (corresponding to a one percent annual probability of occurrence) is provided in place of the previous 50–90-year MRI map. For Grade C construction, a separate 50-year MRI (two percent annual probability of occurrence) map is now provided. In the previous Code, a factor was applied to the 50–90-year MRI map for application to Grade C.
  11. Changes were also made to the method of determining the corresponding wind loads, consistent with the latest engineering practices as an example of a Code revision focused on public safety, the ground end of all anchor guys adjacent to regularly traveled pedestrian thoroughfares, such as sidewalks, and similar places where people can be found must include a substantial and conspicuous marker to help prevent accidents. The previous Code did not require the marking of every such anchor guy.
  12. Significant revisions were made in Section 14 covering batteries. Previous editions of the code were based on lead-acid technology and batteries only used for backup power. The 2023 Code incorporates the new battery technologies and addresses energy storage and backup power.
  13. A new Section 19 of the code covers photovoltaic generating stations, with sections addressing general codes, location, grounding configurations, vegetation management, DC overcurrent protection, and DC conductors. These new rules accommodate large-scale solar power projects.
  14. In the Clearances section, all rules for wireless antenna structures have been consolidated in the equipment section (Rule 238 and 239), which makes the Code more user-friendly.
  15. A new subcommittee was created focusing on generating stations, with the original subcommittee continuing to address substations.
  16. A working group is investigating Fault Managed Power Systems (FMPS) cables as the technology may be used for 5G networks. The team is looking at possible impacts, including clearances and work rules.

 


February 18, 2021

 

Several proposals recommending improvements to the 2017 National Electrical Safety Code (NESC) were submitted to the IEEE subcommittees drafting the 2022 revision of the NESC.   Some of the proposals deal with coordination with the National Electrical Code — which is now in its 2023 revision cycle.  Keep in mind that that NESC is revised every 5 years at the moment; the NEC is revised every 3 years.

The original University of Michigan standards advocacy enterprise has been active in writing the NESC since the 2012 edition and set up a workspace for use by electrical professionals in the education industry.   We will be using this workspace as the 2022 NESC continues along its developmental path:

IEEE 2022 NESC Workspace

The revision schedule — also revised in response to the circumstances of the pandemic — is linked below::

NESC 2023 Edition Revision Schedule*

 

The NESC is a standing item on the 4-times monthly teleconferences of the IEEE Education & Healthcare Facilities committee.  The next online meeting is shown on the top menu of the IEEE E&H website:

IEEE E&H Committee

We have a copy of the first draft of the 2023 NESC and welcome anyone to join us for an online examination during any of Power & ICT teleconferences.  See our CALENDAR for the next online meeting.

Business unit leaders, facility managers and electrical engineers working in the education facilities industry may be interested in the campus power system reliability database.   Forced outages on large research campuses, for example, can have enterprise interruption cost of $100,000 to $1,000,000 per minute.    The campus power system forced outage database discriminates between forced outages attributed to public utility interruptions and forced outages attributed to the university-owned power system.   The E&H committee will convey some of the discipline applied by the IEEE 1366 technical committee into its study of campus power systems and, ultimately, setting a benchmark for the standard of care for large university power systems.

 

 

* The IEEE changed the nominal date of the next edition; likely owed to pandemic-related slowdown typical for most standards developing organizations.

Issue: [16-67]

Contact: Mike Anthony, Robert G. Arno, Lorne Clark, Nehad El-Sharif, Jim Harvey, Kane Howard, Joe Weber, Guiseppe Parise, Jim Murphy

Category: Electrical, Energy Conservation & Management, Occupational Safety

ARCHIVE: University of Michigan Advocacy in the NESC 2007 – 2017


LEARN MORE:

P1366 – Guide for Electric Power Distribution Reliability Indices 

University Design Guidelines that reference the National Electrical Safety Code

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
error: Content is protected !!
Skip to content