προμηθέας 300

Loading
loading...

προμηθέας 300

May 2, 2024
mike@standardsmichigan.com

No Comments

Today we run through recent action in fire safety best practice literature.  Even though fire safety technologies comprise about 2-4 percent of a new building budget, the influence of the fire safety culture dominates all aspects campus safety; cybersecurity of public safety communication technology for example.

A small sample of the issues we have tracked in the past: (2002-2023).  Items in RED indicate success in reducing cost with no reduction in safety (i.e. successful rebuttal, typically market-making by incumbents)

  • Limiting vendor lock-in (promote interoperability) in building additions.
  • Limiting the tendency to lowball first cost in order to achieve vendor lock-in later in the facility life-cycle
  • Dormitory kitchen fire safety

Fire Safety of University Dormitory Based on Bayesian Network

  • Clarification of mixed-occupancy classifications (occupant loading)
  • Fixed interval (rather than risk-informed) inspection, testing and maintenance of fire alarm and protection system components
  • Fire alarm system upgrades during renovation

Gamification Teaching in School Fire Safety

  • Mixed zone and addressable alarm system wiring
  • Wireless initiation devices
  • Integrated fire protection systems (NFPA 3&4)
  • Portable fire extinguishers (NFPA 10)

Hospital Evacuation under Fire

  • Alarm system re-set procedures
  • Sprinkler system coverage for animals in research
  • Scalability of fire safety professional certification
  • Sprinklering of off-campus student housing
  • Advocating central (or campus district) fire pump systems

One of the newer issues to revisit over the past few years is the fire safety of tents.   Many colleges and universities are setting up large commercial tents outside buildings (within range of Wi-Fi) for students to congregate, study and dine.  We are also seeing back and forth on fire safety in theatrical performance venues in the International Code Council building safety catalog.

We approach these titles with an eye toward driving risk-informed, performance requirements that reduce risk and cost for the user interest; while recognizing the responsibility of competitor stakeholders.   It is not a friendly space for the user-interest who seeks to optimally resolve the competing requirements of safety and economy.   Vertical incumbents completely dominate this domain.

Prepared Hero Fire Blanket

Relevant NFPA Titles:

NFPA 10 Standard for Portable Fire Extinguishers

    • Public Input Closing Date: June 1, 2023

NFPA 13 Standard for the Installation of Sprinkler Systems

NFPA 25 Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems

NFPA 72 National Fire Alarm and Signaling Code®

    • Public Comment Closing Date: May 31, 2023

NFPA 75 Standard for the Fire Protection of Information Technology Equipment

NFPA 76 Standard for the Fire Protection of Telecommunications Facilities

NFPA 92 Standard for Smoke Control Systems

    • Public Comment Closing Date: January 4, 2023

International Code Council Group A 2021/2022 Code Cycle

Use the login credentials at the upper right of our home page.


More

NFPA Report: Structure Fires in Dormitories, Fraternities, Sororities and Barracks 

ASTM Committee E0% on Fire Standards

Standing Agenda / Prometheus


Key Updates on Fire Safety Standards

Why do Humans Stare at Fire? : Scientific aspects of primal magic of fire

How to Make the Three Most Popular Milk Coffees

May 2, 2024
mike@standardsmichigan.com

No Comments

Coffs Harbour

Cowardice Is Killing The West

Australia

Fire Safety

May 2, 2024
mike@standardsmichigan.com
, ,
No Comments

“Creation of humanity by Prometheus as Athena looks on”

Fire safety leadership usually finds itself involved in nearly every dimension of risk on the #WiseCampus; not just the built environment but security of interior spaces with combustibles but along the perimeter and within the footprint of the education community overall.

The Campus Fire Marshal, for example, usually signs the certificate of occupancy for a new building but may be drawn into meetings where decisions about cybersecurity are made.   Fire protection systems coincide with evacuation systems when there is no risk and both may be at risk because of cyber-risk.

The job description of a campus fire safety official is linked below offers some insight into why fire safety technologies reach into every risk dimension:

University of California Santa Cruz Office of Emergency Services

University of Tennessee Emergency Service Training

The development of the highest level fire safety consensus product in the world is led by the British Standards Institute, under the administration of the International Standardization Organization, with Committee E05 on Fire Standards of  ASTM International as the US Technical Advisory Group Administrator.  The business plan and the map of global participants is linked below:

BUSINESS PLAN ISO/TC 92 Fire safety EXECUTIVE SUMMARY

The consensus products developed by TC 92 are intended to save lives, reduce fire losses, reduce technical barriers to trade, provide for international harmonization of tests and methods and bring substantial cost savings in design. ISO/TC 92 standards are expected to be of special value to developing countries, which are less likely to have national standards.  As with all ISO standards, the TC 92 consensus product is a performance standard suitable for use in prescriptive regulations and provide for a proven route to increased fire safety.

We do not advocate in this standard at the moment; we only track it.  The International Fire Code and the Fire Code have been our priorities since 2006.  The fire safety space is well populated with knowledgeable facility professionals because conformity budgets in the fire safety world — i.e. the local or state fire marshal — usually has a budget.  When you have a budget you usually have people keeping pace with best practice.

We encourage our colleagues in the United States on either the business or academic side of the education facility industry to communicate directly with ANSI’s ISO Team and/or the ASTM Contact: Tom O’Toole, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 Phone: (610) 832-9739, Email: totoole@astm.org

We maintain this title on the agenda of our periodic Global and Prometheus colloquia.  See our CALENDAR for the next online meeting;  open to everyone.

Issue: [19-104]

Category: Fire Safety, Fire Protection, International

Contact: Mike Anthony, Joe DeRosier, Alan Sactor, Joshua Elvove, Casey Grant

More:

The Challenges of Storage and Not Enough Space, Alan Sactor

Life Safety Code

May 2, 2024
mike@standardsmichigan.com
,
No Comments

The Life Safety Code addresses those construction, protection, and occupancy features necessary to minimize danger to life from the effects of fire, including smoke, heat, and toxic gases created during a fire.   It is widely incorporated by reference into public safety statutes; typically coupled with the consensus products of the International Code Council.   It is a mighty document — one of the NFPA’s leading titles — so we deal with it in pieces; consulting it for decisions to be made for the following:

(1) Determination of the occupancy classification in Chapters 12 through 42.

(2) Determination of whether a building or structure is new or existing.

(3) Determination of the occupant load.

(4) Determination of the hazard of contents.

There are emergent issues — such as active shooter response, integration of life and fire safety systems on the internet of small things — and recurrent issues such as excessive rehabilitation and conformity criteria and the ever-expanding requirements for sprinklers and portable fire extinguishers with which to reckon.  It is never easy telling a safety professional paid to make a market for his product or service that it is impossible to be alive and safe.  It is even harder telling the dean of a department how much it will cost to bring the square-footage under his stewardship up to the current code.

The 2021 edition is the current edition and is accessible below:

NFPA 101 Life Safety Code Free Public Access

Public input on the 2027 Revision will be received until June 4, 2024.

 

Since the Life Safety Code is one of the most “living” of living documents — the International Building Code and the National Electric Code also move continuously — we can start anywhere and anytime and still make meaningful contributions to it.   We have been advocating in this document since the 2003 edition in which we submitted proposals for changes such as:

• A student residence facility life safety crosswalk between NFPA 101 and the International Building Code

• Refinements to Chapters 14 and 15 covering education facilities (with particular attention to door technologies)

• Identification of an ingress path for rescue and recovery personnel toward electric service equipment installations.

• Risk-informed requirement for installation of grab bars in bathing areas

• Modification of the 90-minute emergency lighting requirements rule for small buildings and for fixed interval testing

• Modification of emergency illumination fixed interval testing

• Table 7.3.1 Occupant Load revisions

• Harmonization of egress path width with European building codes

There are others.  It is typically difficult to make changes to stabilized standard though some of the concepts were integrated by the committee into other parts of the NFPA 101 in unexpected, though productive, ways.  Example transcripts of proposed 2023 revisions to the education facility chapter is linked below:

Chapter 14 Public Input Report: New Educational Occupancies

Educational and Day Care Occupancies: Second Draft Public Comments with Responses Report

Since NFPA 101 is so vast in its implications we list a few of the sections we track, and can drill into further, according to client interest:

Chapter 3: Definitions

Chapter 7: Means of Egress

Chapter 12: New Assembly Occupancies

Chapter 13: Existing Assembly Occupancies

Chapter 16 Public Input Report: New Day-Care Facilities

Chapter 17 Public Input Report: Existing Day Care Facilities

Chapter 18 Public Input Report: New Health Care Facilities

Chapter 19 Public Input Report: Existing Health Care Facilities

Chapter 28: Public Input Report: New Hotels and Dormitories

Chapter 29: Public Input Report: Existing Hotels and Dormitories

Chapter 43: Building Rehabilitation

Annex A: Explanatory Material

As always we encourage front-line staff, facility managers, subject matter experts and trade associations to participate directly in the NFPA code development process (CLICK HERE to get started)

NFPA 101 is a cross-cutting title so we maintain it on the agenda of our several colloquia —Housing, Prometheus, Security and Pathways colloquia.  See our CALENDAR for the next online meeting; open to everyone.

 

Issue: [18-90]

Category: Fire Safety, Public Safety

Colleagues: Mike Anthony, Josh Elvove, Joe DeRosier, Marcelo Hirschler

More

ARCHIVE / Life Safety Code 2003 – 2018

 


Fire and Life Safety in Stadiums

Quadrivium: Spring

May 2, 2024
mike@standardsmichigan.com

No Comments

“…O chestnut tree;, great rooted blossomer,
Are you the leaf, the blossom or the bold?
O body swayed to music, O brightening glance,
How can we know the dancer from the dance?”

Among Schoolchildren, 1933 William Butler Yeats

The Watson Institute Pennsylvania

United States Patent and Trademark Office: News and Updates

American National Standards Institute: Standards Action

International Electrotechnical Commission

International Organization for Standardization

International Telecommunication Union

More LIVE Campus Cameras

2026 National Electrical Code Workspace

2028 National Electrical Safety Code Workspace

Spring Week 17 | April 22 – April 28

Spring Week 18 | April 29 – May 5

Standards April: Libraries


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We sweep through the world’s three major time zones; updating our understanding of the literature at the technical foundation of education community safety and sustainability in those time zones 24 times per day. We generally eschew “over-coding” web pages to sustain speed, revision cadence and richness of content as peak priority.  We do not provide a search facility because of copyrights of publishers and time sensitivity of almost everything we do.

Cognitive Science: An Introduction to the Study of Mind

Our daily colloquia are typically doing sessions; with non-USA titles receiving priority until 16:00 UTC and all other titles thereafter.  We assume policy objectives are established (Safer-Simpler-Lower-Cost, Longer-Lasting).   Because we necessarily get into the weeds, and because much of the content is time-sensitive and copyright protected, we usually schedule a separate time slot to hammer on technical specifics so that our response to consultations are meaningful and contribute to the goals of the standards developing organization and to the goals of stewards of education community real assets.

1. Leviathan.  We track noteworthy legislative proposals in the United States 118th Congress.  Not many deal specifically with education community real assets since the relevant legislation is already under administrative control of various Executive Branch Departments such as the Department of Education.

We do not advocate in legislative activity at any level.   We respond to public consultations but there it ends.

We track federal legislative action because it provides a stroboscopic view of the moment — the “national conversation”– in communities that are simultaneously a business and a culture.  Even though more than 90 percent of such proposals are at the mercy of the party leadership the process does enlighten the strengths and weakness of a governance system run entirely through the counties on the periphery of Washington D.C.  It is impossible to solve technical problems in facilities without sensitivity to the zietgeist that has accelerated in education communities everywhere.

 

North Dakota

We typically post one federal and one state level consultation or action every day for at least one of the 50-states — in the lower right corner of our home page when most education communities in the United States have begun a new work day.  Examples, irregularly linked:

U.S. Department of Commerce Bureau of Industry and Security: Public consultation on US standards system rule (November 8)

2National Institute of Standards and Technology (NIST)

Post-Quantum Cryptography Practice Guide (June 8)

Public Consultation on Semiconductor Manufacturing (November 28)

NIST Awards Funding to 5 Universities to Advance Standards Education

NIST Center for Neutron Research: 2022 Outstanding Student Poster Presentation

Commerce Levels Playing Field to Support U.S. Stakeholder Participation in International Standards Setting Activities

NIST Report Outlines Strategic Opportunities for U.S. Semiconductor Manufacturing

Occupational exposure and indoor environmental quality evaluation from operating multiple desktop 3D printers in an office environment within a library.

3ANSI ISO Business  (Many of these projects are normally covered during our Hello World! colloquia

ANSI April 2023 Public Policy Update

ANSI January Report 2023 on ISO, IEC & ITU Work Items

ISO Standardization Foresight Framework | Trend Report 2022

New ISO Subcommittee ISO/TC 197/SC 1 – Hydrogen at Scale and Horizontal Energy Systems

New ISO Subcommittee ISO/TC 67/SC 10 – Enhanced oil recovery

Update: Certification+Degree (C+D) pathways in information technology (IT) and health sciences.

2023 Student Paper Competition Theme: Standards Supporting United Nations Sustainable Development Goals.  Submissions due 2 June 2023

Standards Coordination Office | USA WTO TBT Enquiry Point 

USNC/IEC

Consultations (Some posted with IEEE Education & Healthcare Facilities Committee) | Direct access to primary workspace

4. Fast Forward  

Looking Ahead: 2024

5. Rewind

Retrodiction

Lights Out

6. Corrigenda


International Standardization Organization Week Date

 

Readings

Glossary: Education

The College Idea: Andrew Delbanco

Reliability Analysis for Power to Fire Pumps

May 2, 2024
mike@standardsmichigan.com
, ,
No Comments

Reliability Analysis for Power to Fire Pump Using Fault Tree and RBD

Robert Schuerger | HP Critical Facilities

Robert Arno | ITT Excelis Information Systems

Neal Dowling | MTechnology

Michael  A. Anthony | University of Michigan

 

Abstract:  One of the most common questions in the early stages of designing a new facility is whether the normal utility supply to a fire pump is reliable enough to “tap ahead of the main” or whether the fire pump supply is so unreliable that it must have an emergency power source, typically an on-site generator. Apart from the obligation to meet life safety objectives, it is not uncommon that capital on the order of 100000to1 million is at stake for a fire pump backup source. Until now, that decision has only been answered with intuition – using a combination of utility outage history and anecdotes about what has worked before. There are processes for making the decision about whether a facility needs a second source of power using quantitative analysis. Fault tree analysis and reliability block diagram are two quantitative methods used in reliability engineering for assessing risk. This paper will use a simple one line for the power to a fire pump to show how each of these techniques can be used to calculate the reliability of electric power to a fire pump. This paper will also discuss the strengths and weakness of the two methods. The hope is that these methods will begin tracking in the National Fire Protection Association documents that deal with fire pump power sources and can be used as another tool to inform design engineers and authorities having jurisdiction about public safety and property protection. These methods will enlighten decisions about the relative cost of risk control with quantitative information about the incremental cost of additional 9’s of operational availability.

 

 

CLICK HERE to order complete paper

2028 National Electrical Safety Code

May 2, 2024
mike@standardsmichigan.com
,
No Comments

Project Introduction for the 2028 Edition (2:39 minutes)

Changes proposals for the Edition will be received until 15 May 2024

Project Workspace: Update Data Tables in IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems

Painting by Linda Kortesoja Klenczar

Federal Energy Regulatory Commission: Electrical Resource Adequacy

Relevant Research

The standard of care for electrical safety at high and low voltage is set by both the NEC and the NESC. There are gaps, however (or, at best “gray areas”) — the result of two technical cultures: utility power culture and building fire safety culture. There is also tradition. Local system conditions and local adaptation of regulations vary. Where there is a gap; the more rigorous requirement should govern safety of the public and workers.

The 2023 National Electrical Safety Code (NESC)– an IEEE title often mistaken for NFPA’s National Electrical Code (NEC) — was released for public use about six months ago; its normal 5-year revision cycle interrupted by the circumstances of the pandemic.   Compared with the copy cost of the NEC, the NESC is pricey, though appropriate for its target market — the electric utility industry.  Because the 2023 revision has not been effectively “field tested” almost all of the available support literature is, effectively, “sell sheets” for pay-for seminars and written by authors presenting themselves as experts for the battalions of litigators supporting the US utility industry.  Without the ability to sell the NESC to prospective “insiders” the NESC would not likely be commercial prospect for IEEE.   As the lawsuits and violations and conformance interests make their mark in the fullness of time; we shall see the 2023 NESC “at work”.

IEEE Standards Association: Additional Information, Articles, Tools, and Resources Related to the NESC

Office of the President: Economic Benefits of Increasing Electric Grid Resilience to Weather Outages

Research Tracks:

NARUC Resolution Urging Collaboration Between the National Electrical Safety Code and the National Electrical Code

  1. Smart Grid Technologies:
    • Investigating advanced technologies to enhance the efficiency, reliability, and sustainability of power grids.
  2. Energy Storage Systems:
    • Researching and developing new energy storage technologies to improve grid stability and accommodate intermittent renewable energy sources.
  3. Distributed Generation Integration:
    • Studying methods to seamlessly integrate distributed energy resources such as solar panels and wind turbines into the existing power grid.
  4. Grid Resilience and Security:
    • Exploring technologies and strategies to enhance the resilience of power grids against cyber-attacks, natural disasters, and other threats.
  5. Demand Response Systems:
  6. Advanced Sensors and Monitoring:
    • Developing new sensor technologies and monitoring systems to enhance grid visibility, detect faults, and enable predictive maintenance.
  7. Power Quality and Reliability:
    • Studying methods to improve power quality, reduce voltage fluctuations, and enhance overall grid reliability.
  8. Integration of Electric Vehicles (EVs):
    • Researching the impact of widespread electric vehicle adoption on the grid and developing smart charging infrastructure.
  9. Grid Automation and Control:
    • Exploring advanced automation and control strategies to optimize grid operations, manage congestion, and improve overall system efficiency.
  10. Campus Distribution Grid Selling and Buying 

Relevant Technical Literature

IEC 60050 International Electrotechnical Vocabulary (IEV) – Part 601: Generation, transmission and distribution of electricity | April 16

Recommended Practice for Battery Management Systems in Energy Storage Applications | Comments Due March 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

Medical electrical equipment: basic safety and essential performance of medical beds for children | April 26

 

Standards:

Presentation | FERC-NERC-Regional Entity Joint Inquiry Into Winter Storm Elliott

IEEE Guide for Joint Use of Utility Poles with Wireline and/or Wireless Facilities

NESC Rule 250B and Reliability Based Design

NESC Requirements (Strength and Loading)

Engineering Analysis of Possible Effects of 2017 NESC Change Proposal to Remove 60′ Exemption

National Electrical Safety Code Workspace


Joint Use of Electric Power Transmission & Distribution Facilities and Equipment

A Framework to Quantify the Value of Operational Resilience for Electric Power Distribution Systems

August 14, 2003 Power Outage at the University of Michigan

Technologies for Interoperability in Microgrids for Energy Access


National Electrical Safety Code: Revision Cycles 1993 through 2023

 


February 24, 2023

The new code goes into effect 1 February 2023, but is now available for access on IEEE Xplore! Produced exclusively by IEEE, the National Electrical Safety Code (NESC) specifies best practices for the safety of electric supply and communication utility systems at both public and private utilities.  The bibliography is expanding rapidly:

NESC 2023: Introduction to the National Electrical Safety Code

NESC 2023: Rule Changes

NESC 2023Safety Rules for Installation and Maintenance of Overhead Electric Supply

NESC 2023Safety Rules for the Installation and Maintenance of Underground Electric Supply and Communication Lines

NESC 2023: Rules for Installation and Maintenance of Electric Supply Stations

IEEE Digital Library

Grid Edge Visibility: Gaps and a road map


October 31, 2022

The IEEE NESC technical committee has released a “fast track” review of proposed changes to fault-managed power system best practice:

CP5605 Provides a definition of new Fault Managed Power System (FMPS) circuits used for the powering of
communications equipment clearly defines what constitutes a FMPS circuit for the purposes of application of the NESC
Rules of 224 and 344
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXtAAAAADhMnPs

CP5606 Provides new definitions of Communication Lines to help ensure that Fault Managed Power Systems (FMPS)
circuits used for the exclusive powering of communications equipment are clearly identified as communications lines
and makes an explicit connection to Rule 224B where the applicable rules for such powering circuits are found.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXpAAAAAFfvWIs

CP5607 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXuAAAAAEEt3p4

CP5608 The addition of this exception permits cables containing Fault Managed Power System (FMPS) circuits used for
the exclusive powering of communications equipment to be installed without a shield.
https://ieee-sa.imeetcentral.com/p/eAAAAAAASPXvAAAAAGrzyeI

We refer them to the IEEE Education & Healthcare Facilities Committee for further action, if any.

 


August 5, 2022

We collaborate closely with the IEEE Education & Healthcare Facilities Committee (IEEE E&H) to negotiate the standard of care for power security on the #SmartCampus  since many campus power systems are larger than publicly regulated utilities.  Even when they are smaller, the guidance in building the premise wiring system — whether the premise is within a building, outside the building (in which the entire geography of the campus footprint is the premise), is inspired by IEEE Standards Association administrated technical committees.

Northeast Community College | Norfolk, Nebraska

Today we begin a list of noteworthy changes to be understood in the next few Power colloquia.  See our CALENDAR for the next online meeting.

  1. New rules 190 through 195 cover photovoltaic generating stations.  Rule 116c adds an exception for short lengths of insulated power cables and short-circuit protection if the situation involves fewer than 1,000 volts.
  2. Rule 320B has been revised to clarify separations that apply to communications and supply in different conduit systems.
  3. Table 410-4 is based on the latest arc flash testing on live-front transformers.
  4. Rule 092A adds an exception allowing protection, control, and safety battery systems to not be grounded.
  5. Rules 234 B1, C1, D1 were revised to better present vertical and horizontal wind clearances, and to coordinate requirements with the new Table 234-7.
  6. Rule 120A was revised to provide correction factors for clearances on higher elevations.
  7. Table 253-1 has been revised to reduce the load factor for fiber-reinforced polymer components under wire tension—including dead ends—for Grade C construction.
  8. Rule 410A now requires a specific radio-frequency safety program for employees who might be exposed.
  9. In the Clearances section, as well as in the specification of the Grade of Construction in Table 242-1, the Code further clarifies the use of non-hazardous fiber optic cables as telecom providers continue to expand their networks.
  10. Revisions in the Strength & Loading sections include modified Rule 250C, which addresses extreme wind loading for overhead lines. Two wind maps are now provided instead of the previous single one. A map for Grade B, the highest grade of construction, with a Mean Recurrence Interval (MRI) of 100 years (corresponding to a one percent annual probability of occurrence) is provided in place of the previous 50–90-year MRI map. For Grade C construction, a separate 50-year MRI (two percent annual probability of occurrence) map is now provided. In the previous Code, a factor was applied to the 50–90-year MRI map for application to Grade C.
  11. Changes were also made to the method of determining the corresponding wind loads, consistent with the latest engineering practices as an example of a Code revision focused on public safety, the ground end of all anchor guys adjacent to regularly traveled pedestrian thoroughfares, such as sidewalks, and similar places where people can be found must include a substantial and conspicuous marker to help prevent accidents. The previous Code did not require the marking of every such anchor guy.
  12. Significant revisions were made in Section 14 covering batteries. Previous editions of the code were based on lead-acid technology and batteries only used for backup power. The 2023 Code incorporates the new battery technologies and addresses energy storage and backup power.
  13. A new Section 19 of the code covers photovoltaic generating stations, with sections addressing general codes, location, grounding configurations, vegetation management, DC overcurrent protection, and DC conductors. These new rules accommodate large-scale solar power projects.
  14. In the Clearances section, all rules for wireless antenna structures have been consolidated in the equipment section (Rule 238 and 239), which makes the Code more user-friendly.
  15. A new subcommittee was created focusing on generating stations, with the original subcommittee continuing to address substations.
  16. A working group is investigating Fault Managed Power Systems (FMPS) cables as the technology may be used for 5G networks. The team is looking at possible impacts, including clearances and work rules.

 


February 18, 2021

 

Several proposals recommending improvements to the 2017 National Electrical Safety Code (NESC) were submitted to the IEEE subcommittees drafting the 2022 revision of the NESC.   Some of the proposals deal with coordination with the National Electrical Code — which is now in its 2023 revision cycle.  Keep in mind that that NESC is revised every 5 years at the moment; the NEC is revised every 3 years.

The original University of Michigan standards advocacy enterprise has been active in writing the NESC since the 2012 edition and set up a workspace for use by electrical professionals in the education industry.   We will be using this workspace as the 2022 NESC continues along its developmental path:

IEEE 2022 NESC Workspace

The revision schedule — also revised in response to the circumstances of the pandemic — is linked below::

NESC 2023 Edition Revision Schedule*

 

The NESC is a standing item on the 4-times monthly teleconferences of the IEEE Education & Healthcare Facilities committee.  The next online meeting is shown on the top menu of the IEEE E&H website:

IEEE E&H Committee

We have a copy of the first draft of the 2023 NESC and welcome anyone to join us for an online examination during any of Power & ICT teleconferences.  See our CALENDAR for the next online meeting.

Business unit leaders, facility managers and electrical engineers working in the education facilities industry may be interested in the campus power system reliability database.   Forced outages on large research campuses, for example, can have enterprise interruption cost of $100,000 to $1,000,000 per minute.    The campus power system forced outage database discriminates between forced outages attributed to public utility interruptions and forced outages attributed to the university-owned power system.   The E&H committee will convey some of the discipline applied by the IEEE 1366 technical committee into its study of campus power systems and, ultimately, setting a benchmark for the standard of care for large university power systems.

 

 

* The IEEE changed the nominal date of the next edition; likely owed to pandemic-related slowdown typical for most standards developing organizations.

Issue: [16-67]

Contact: Mike Anthony, Robert G. Arno, Lorne Clark, Nehad El-Sharif, Jim Harvey, Kane Howard, Joe Weber, Guiseppe Parise, Jim Murphy

Category: Electrical, Energy Conservation & Management, Occupational Safety

ARCHIVE: University of Michigan Advocacy in the NESC 2007 – 2017


LEARN MORE:

P1366 – Guide for Electric Power Distribution Reliability Indices 

University Design Guidelines that reference the National Electrical Safety Code

 

Electrical Resource Adequacy

May 2, 2024
mike@standardsmichigan.com
, ,
No Comments

“When buying and selling are controlled by legislation,
the first things to be bought and sold are legislators.”
P.J. O’Rourke

Predictive Reliability Analysis of Power Distribution Systems Considering the Effects of Seasonal Factors on Outage Data Using Weibull Analysis Combined With Polynomial Regression


February 2024 Highlights 

Failure Rate Prediction Model of Substation Equipment Based on Weibull Distribution and Time Series Analysis

January 2024 Highlights



Transmission Planning Using a Reliability Criterion

Readings / The Administrative State

In power system engineering, availability and reliability are two important concepts, but they refer to different aspects of the system’s performance.

Reliability:

  • Reliability refers to the ability of a power system to perform its intended function without failure for a specified period under given operating conditions. It is essentially a measure of how dependable the system is.
  • Reliability metrics often include indices such as the frequency and duration of outages, failure rates, mean time between failures (MTBF), and similar measures.
  • Reliability analysis focuses on identifying potential failure modes, predicting failure probabilities, and implementing measures to mitigate risks and improve system resilience.Availability:
  • Availability, on the other hand, refers to the proportion of time that a power system is operational and able to deliver power when needed, considering both scheduled and unscheduled downtime.
  • Availability is influenced by factors such as maintenance schedules, repair times, and system design redundancies.
  • Availability is typically expressed as a percentage and can be calculated using the ratio of the uptime to the total time (uptime plus downtime).
  • Availability analysis aims to maximize the operational readiness of the system by minimizing downtime and optimizing maintenance strategies.

Reliability focuses on the likelihood of failure and the ability of the system to sustain operations over time, while availability concerns the actual uptime and downtime of the system, reflecting its readiness to deliver power when required. Both concepts are crucial for assessing and improving the performance of power systems, but they address different aspects of system behavior.

 

November 2023 Highlights | FERC insight | Volume 10

Determining System and Subsystem Availability Requirements: Resource Planning and Evaluation

Comment: These 1-hour sessions tend to be administrative in substance, meeting the minimum requirements of the Sunshine Act. This meeting was no exception. Access to the substance of the docket is linked here.

Noteworthy: Research into the natural gas supply following Winter Storm Elliot.

 


August 14, 2003


 UPDATED POLICIES ON U.S. DECARBONIZATION AND TECHNOLOGY TRANSITIONS


June 15:FERC Finalizes Plans to Boost Grid Reliability in Extreme Weather Conditions

On Monday June 13th, Federal Energy Regulatory Commission commissioners informed the House Committee on Energy and Commerce that the “environmental justice” agenda prohibits reliable dispatchable electric power needed for national power security. One megawatt of natural gas generation does not equal one megawatt of renewable generation. The minority party on the committee — the oldest standing legislative committee in the House of Representatives (established 1795) — appears indifferent to the reliability consequences of its policy.

Joint Federal-State Task Force on Electric Transmission

“Our nation’s continued energy transition requires the efficient development of new transmission infrastructure. Federal and state regulators must address numerous transmission-related issues, including how to plan and pay for new transmission infrastructure and how to navigate shared federal-state regulatory authority and processes. As a result, the time is ripe for greater federal-state coordination and cooperation.”












 

Bibliography:

Natural Gas Act of 1938

Natural Gas Policy Act of 1978

Glossary of Terms Used in NERC Reliability Standards

The Major Questions Doctrine and Transmission Planning Reform

As utilities spend billions on transmission, support builds for independent monitoring

States press FERC for independent monitors on transmission planning, spending as Southern Co. balks

Related:

Homeland Power Security

At the July 20th meeting of the Federal Energy Regulatory Commission Tristan Kessler explained the technical basis for a Draft Final Rule for Improvements to Generator Interconnection Procedures and Agreements, On August 16th the Commission posted a video reflecting changes in national energy policy since August 14, 2003; the largest blackout in American history.

NESC & NEC Cross-Code Correlation

May 2, 2024
mike@standardsmichigan.com

No Comments

Statement from NARUC During its Summer 2018 Committee Meetings

IEEE Education & Healthcare Facilities Committee

Ædificare

May 1, 2024
mike@standardsmichigan.com
No Comments

United States: Schools of Architecture

The Financial Impact of Architectural Design: Balancing Aesthetics and Budget in Modern Construction

LIVE

Homeschooling

New from American School & University:

Lehman College: Nursing Education, Research and Practice Center 

Vincennes University breaks ground on $33.9 million health sciences center

$40 million arena renovation planned at Furman University

Colgate University is building apartments geared for faculty and staff

“Architect at his drawing board” 1893 Teknisk Ukeblad Norway

As reported by the US Department of Commerce Census Bureau the value of construction put in place by April 2023 by the US education industry proceeded at a seasonally adjusted annual rate of $110.168 billionThis number does not include renovation for projects under 50,000 square feet and new construction in university-affiliated health care delivery enterprises.   Reports are released two months after calendar month.  The complete report is available at the link below:

MONTHLY CONSTRUCTION SPENDING, March 2024

This spend makes the US education facilities industry (which includes colleges, universities, technical/vocational and K-12 schools, most university-affiliated medical research and healthcare delivery enterprises, etc.) the largest non-residential building construction market in the United States after commercial property; and fairly close.  For perspective consider total public + private construction ranked according to the tabulation most recently released:

$128.487 billion| Education Facilities

$132.860 billion | Power

$67.773 billion | Healthcare

Keep in mind that inflation figures into the elevated dollar figures.  Overall — including construction, energy, custodial services, furnishings, security. etc., — the non-instructional spend plus the construction spend of the US education facilities is running at a rate of about $300 – $500 billion per year.

Construction cameras at US schools, colleges and universities

We typically pick through the new data set; looking for clues relevant to real asset spend decisions.  Finally, we encourage the education facilities industry to contribute to the accuracy of these monthly reports by responding the US Census Bureau’s data gathering contractors.

Reconstruction of Ancient Agora

More

National Center for Educational Statistics

AIA: Billings Index shows but remains strong May 2022

National Center for Education Statistics

Sightlines: Capital Investment College Facilities

OxBlue: Time-Lapse Construction Cameras for Education

Architectural Billing Index

IBISWorld Education Sector

US Census Bureau Form F-33 Survey of School System Finances

American School & University

 

Carnegie Classifications

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content