Electric Vehicle Charging

Loading
loading...

Electric Vehicle Charging

March 20, 2025
[email protected]
No Comments

GROUP A MODEL BUILDING CODES: Comments on Committee Actions will be received until July 8th

International Building Code Chapter 4, Section 406.2.7

Edison electric vehicle | National Park Service, US Department of the Interior

 

Free public access to the 2021 edition of the International Energy Conservation Code (IECC) is linked below:

2021 International Energy Conservation Code

 

Electric vehicle charging stations are addressed in the 2024 International Energy Conservation Code (IECC) within two specific appendices:

Appendix RE: This appendix provides detailed requirements for electric vehicle charging infrastructure, focusing on both residential and commercial buildings. It includes definitions and infrastructure standards to ensure that new constructions are equipped to support electric vehicle charging​

Appendix CG: This appendix offers guidance on electric vehicle power transfer and charging infrastructure, emphasizing the integration of EV-ready requirements into building designs. It outlines the necessary provisions for installing and managing EV charging stations, ensuring compliance with energy conservation standards​

.These appendices are part of the broader efforts to incorporate EV infrastructure into building codes, promoting energy efficiency and supporting the transition to electric vehicles.

Recharging infrastructure at at Google’s Mountain View (California) campus | Pretty ugly, eh?

“Gas” 1940 Edward Hopper

This standard will be updated within a reconfigured code development cycle linked below:

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

Keep in mind that many electric vehicle safety and sustainability concepts will track in other titles in the ICC catalog.   It is enlightening to see other energy related proposals tracking in the most recent Group A code revision cycle

The following proposals discussed during the Group A Hearings ended earlier this month are noteworthy:

IBC § 202 (NEW) | G66-21 |  Electrical mobility definitions

IBC § 1107.2, et al | E124-21 & E125-21 & E126-21 |  Electrical vehicle charging stations for R-2 occupancies.

From the Group B revision cycle — COMPLETE MONOGRAPH:

R309.6 Electric vehicle charging stations and systems. Where provided, electric vehicle charging systems shall be installed in accordance with NFPA 70. Electric vehicle charging system equipment shall be listed and labeled in accordance with UL 2202. Electric vehicle supply equipment shall be listed and labeled in accordance with UL 2594.

IBC 406.2.7 Electric vehicle charging stations and systems. Where provided, electric vehicle charging systems shall be installed in accordance with NFPA 70. Electric vehicle charging system equipment shall be listed and labeled in accordance with UL 2202. Electric vehicle supply equipment shall be listed and labeled in accordance with UL 2594. Accessibility to electric vehicle charging stations shall be provided in accordance with Section 1108.

TABLE R328.5 MAXIMUM AGGREGATE RATINGS OF ESS (Energy Storage Systems) – PDF Page 1476

Incumbents are socking in EV concepts all across the ICC catalog.  We refer them to experts in the Industrial Applications Society IEEE E&H Committee.

 

 

One of the more spirited debates in recent revision cycles is the following:

Who shall pay for electrical vehicle charging infrastructure?   

The underlying assumption is that the electrification of the global transportation grid has a net benefit.   We remain mute on that question; the question of net gain.

Of course, many proposals pointed the finger at the stakeholder with the deepest pockets.  Accordingly, new commercial building owners will be required to install charging stations for new buildings.   During 2018 and 2019 we tracked the action in the workspace below so that we could collaborate with the IEEE Education & Healthcare Facilities Committee:

2021 Electric Vehicle Infrastructure

Given that most higher education facilities are classified as commercial, the cost of charging stations will be conveyed into the new building construction budget unless the unit takes an exception.   Generally speaking, most colleges and universities like to display their electric vehicle credentials, even if the use of such charging stations remains sparse.

Cornell University

Issue: [11-40]

Category: Electrical, #SmartCampus

Colleagues: Mike Anthony, Jim Harvey

* The education industry has significant square footage this is classified as residential; particularly on the periphery of large research campuses.


LEARN MORE:

ICC 2021/2022 Code Development Cycle

The Top 5 Energy Efficiency Proposals for the 2021 IECC

Archive / IECC Electric Vehicle Charging

 

Drivers facing the yellow-light-dilemma

March 20, 2025
[email protected]
,
No Comments

Center for Digital Education | University of Michigan

 

Stochastic hybrid models for predicting the behavior of drivers facing the yellow-light-dilemma

Paul A. Green | University of Michigan

 Daniel Hoehener & Domitilla Del Vecchio | Massachusetts Institute of Technology

  

Abstract:  We address the problem of predicting whether a driver facing the yellow-light-dilemma will cross the intersection with the red light. Based on driving simulator data, we propose a stochastic hybrid system model for driver behavior. Using this model combined with Gaussian process estimation and Monte Carlo simulations, we obtain an upper bound for the probability of crossing with the red light. This upper bound has a prescribed confidence level and can be calculated quickly on-line in a recursive fashion as more data become available. Calculating also a lower bound we can show that the upper bound is on average less than 3% higher than the true probability. Moreover, tests on driving simulator data show that 99% of the actual red light violations, are predicted to cross on red with probability greater than 0.95 while less than 5% of the compliant trajectories are predicted to have an equally high probability of crossing. Determining the probability of crossing with the red light will be important for the development of warning systems that prevent red light violations.

CLICK HERE to order complete article

Barbering & Cosmetology Academies

March 19, 2025
[email protected]
No Comments

‘The Barber of Seville’ by Luis Alvarez Catalá

Codes, standards and licensing for barbering schools and cosmetology academies are governed by local regulations; or local adaptations of national standards-setting organizations.  Our exploration today deals primarily with the best practice literature in the United States.

Northern Michigan University | Marquette County

Building Codes

  1. Minimum Floor Space
    • Schools must provide adequate space for instruction and practice. For example, California requires a minimum of 3,000 square feet for cosmetology schools (which often include barbering), with at least 2,000 square feet dedicated to working, practice, and classroom areas. Additional space (e.g., 30 square feet per student beyond the first 50) may be required as enrollment increases.
    • Rooms for practical work must be sized appropriately, such as at least 14 feet wide for one row of barber chairs or 20 feet for two rows (California standard).
  2. Ceiling Height
    • Practice and classroom areas often require a minimum ceiling height, such as 9 feet, to ensure proper ventilation and comfort (e.g., California Building Code).
  3. Floor Finish
    • Floors in areas like restrooms or workspaces must be made of nonabsorbent materials (e.g., tile) to facilitate cleaning and maintain hygiene.
  4. Separation from Other Uses
    • Barbering schools must be distinct entities, not combined with residential spaces or unrelated businesses (e.g., Nevada’s NAC 643.500).
  5. Compliance with Local Building and Zoning Codes
    • Facilities must adhere to local ordinances for construction, occupancy, and zoning, ensuring the building is structurally sound and legally permitted for educational use (e.g., Virginia’s 18VAC41-20-270).
  6. Accessibility
    • Buildings must comply with accessibility standards (e.g., ADA in the U.S.), providing ramps, wide doorways, and accessible restrooms.


Safety

  1. Fire Safety
    • Compliance with the State Uniform Fire Prevention and Building Code (e.g., New York’s 19 NYCRR Parts 600-1250) or equivalent, including fire exits, extinguishers, and alarms.
    • Emergency exits must be clearly marked and unobstructed.
  2. Electrical Safety
    • All electrical equipment (e.g., clippers, dryers) must be regularly inspected (e.g., PAT testing in some regions) to prevent shocks or fires.
  3. Ventilation and Temperature Control
    • Adequate ventilation systems are required to maintain air quality and a safe working temperature, protecting students and instructors from fumes or overheating.
  4. First Aid and Emergency Preparedness
    • A stocked first aid kit must be available, and schools should have protocols for handling accidents or emergencies.
  5. Equipment Safety
    • Tools and workstations (e.g., chairs, sinks) must be maintained in good condition to prevent injuries. Hazardous tools like razor-edged implements for callus removal are often prohibited (e.g., California regulations).
  6. Occupational Safety
    • Compliance with OSHA (Occupational Safety and Health Administration) or state equivalents, such as Virginia’s Department of Labor and Industry standards, to protect against workplace hazards like chemical exposure or repetitive strain.


Hygiene

  1. Sanitation of Facilities
    • Schools must be kept clean and sanitary at all times, including floors, walls, furniture, and workstations (e.g., Virginia’s 18VAC41-20-270).
  2. Disinfection of Tools
    • Each student or instructor must have a wet disinfection unit at their station for sterilizing reusable tools (e.g., combs, shears) after each use. Disinfectants must be EPA-registered and bactericidal, virucidal, and fungicidal.
    • Single-use items (e.g., razor blades) must be discarded after each client in a labeled sharps container.
  3. Hand Hygiene
    • Practitioners must wash hands with soap and water or use hand sanitizer before services (e.g., Texas Rule 83.102).
  4. Client Protection
    • Sanitary neck strips or towels must be used to prevent capes from contacting clients’ skin directly (e.g., California regulations).
    • Services cannot be performed on inflamed, broken, or infected skin, and practitioners with such conditions on their hands must wear gloves.
  5. Product Safety
    • Cosmetic products containing FDA-banned hazardous substances are prohibited, and all products must be used per manufacturer instructions (e.g., Virginia’s 18VAC41-20-270).
  6. Waste Management
    • Proper disposal of soiled items (e.g., hair clippings) and hazardous waste (e.g., blades) is required, often daily or after each client.
  7. Health Department Compliance
    • Schools must follow state health department guidelines and report inspection results (e.g., Virginia requires reporting to the Board of Barbers and Cosmetology).
  8. Self-Inspection
    • Annual self-inspections must be documented and retained for review (e.g., Virginia mandates keeping records for five years).


Discussion

  • State-Specific Variations: Always consult your state’s barbering or cosmetology board for exact requirements. For instance, Texas (TDLR) emphasizes signage and licensing display, while California focuses on detailed sterilization methods.
  • Inspections: Schools are subject to regular inspections by state boards or health departments to ensure compliance.

Cosmetology (as time allows)

 

Designing Lighting for People and Buildings

March 19, 2025
[email protected]
, , , ,
No Comments

 

Public Consultation on IES RP-6 Recommended Practice: Lighting Sports and Recreational Areas closes October 7

Sport Lighting

“Electrical Building World’s Columbian Exposition Chicago 1892

Today we feature the catalog of the Illumination Engineering Society — one of the first names in standards-setting in illumination technology, globally* with particular interest in its leading title IES LP-1 | LIGHT + DESIGN Lighting Practice: Designing Quality Lighting for People and Buildings.

From its prospectus:

“…LIGHT + DESIGN was developed to introduce architects, lighting designers, design engineers, interior designers, and other lighting professionals to the principles of quality lighting design. These principles; related to visual performance, energy, and economics; and aesthetics; can be applied to a wide range of interior and exterior spaces to aid designers in providing high-quality lighting to their projects.

Stakeholders: Architects, interior designers, lighting practitioners, building owners/operators, engineers, the general public, luminaire manufacturers.  This standard focuses on design principles and defines key technical terms and includes technical background to aid understanding for the designer as well as the client about the quality of the lighted environment. Quality lighting enhances our ability to see and interpret the world around us, supporting our sense of well-being, and improving our capability to communicate with each other….”


The entire catalog is linked below:

IES Lighting Library

Illumination technologies run about 30 percent of the energy load in a building and require significant human resources at the workpoint — facility managers, shop foremen, front-line operations and maintenance personnel, design engineers and sustainability specialists.  The IES has one of the easier platforms for user-interest participation:

IES Standards Open for Public Review

Because the number of electrotechnology standards run in the thousands and are in continual motion* we need an estimate of user-interest in any title before we formally request a redline because the cost of obtaining one in time to make meaningful contributions will run into hundreds of US dollars; apart from the cost of obtaining a current copy.

We maintain the IES catalog on the standing agendas of our Electrical, Illumination and Energy colloquia.   Additionally, we collaborate with experts active in the IEEE Education & Healthcare Facilities Committee which meets online 4 times monthly in European and American time zones; all colloquia online and open to everyone.   Use the login credentials at the upper right of our home page to join us.

Issue: [Various}

Category: Electrical, Energy, Illumination, Facility Asset Management

Colleagues: Mike Anthony, Gary Fox, Jim Harvey, Kane Howard, Glenn Keates, Daleep Mohla, Giuseppe Parise, Georges Zissis

Brownian Motion” comes to mind because of the speed and interdependencies.

“Season of Light Illumination”

 


LEARN MORE:

 

Alternating Current Generators

March 18, 2025
[email protected]
No Comments

Today we scan the status of the literature governing the specification, installation, operation and maintenance of the larger commercial-scale generators that provide backup power for emergency egress, hospitals, data centers, critical operations and the like.  These are three phase units – larger than residential generators (in kilowatts terms) but smaller than regulated utility generators.  This topic is further breakdown of coverage in previous sessions, spanning decades.  Use the login credentials at the upper right of our home page.

  • IEC 60034 – Rotating Electrical Machines (General requirements for electric machines, including generators).
  • ISO 8528: Reciprocating Internal Combustion Engine Driven Alternating Current Generating Sets
  • NEMA MG 10012-2023: Safety Standard for Construction and Guide for Selection, Installation, and Use of Electric Motors and Generators
  • ANSI C84.1 – Voltage ratings for electric power systems and equipment.
  • UL 2200: Standard for Stationary Engine Generator Assemblies
  • UL 142 – Safety standard for fuel tanks used in generator installations.
  • IEEE 446: Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications
  • ASCE 24: Flood Resistant Design and Construction
  • ASME B31.9 – Building Services Piping (applies to piping for fuel and exhaust systems in commercial buildings).
  • NFPA 37: Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines
  • NFPA 70:  National Electrical Code
  • NFPA 110 & 111: Standard for emergency and standby power systems.
  • ANSI/NETA Acceptance Testing Specifications
  • EPA Regulations (e.g., 40 CFR Part 60) | EPA Tier Regulations – Emission standards for diesel and gas-powered generators in the U.S.
  • OSHA 29 CFR 1910 – Occupational safety and health standards for electrical systems, including generators.

Related:

Schools & Universities Utilize Stationary & Portable Generators for Backup Power

Reliability Analysis for Power to Fire Pumps

Emergency and Standby Power Systems

Critical Operations Power Systems

Transfer Equipment

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content