Rightsizing Electrical Power Systems

Loading
loading...

Rightsizing Electrical Power Systems

October 24, 2024
[email protected]
, , ,
No Comments

Standards Michigan, spun-off in 2016 from the original University of Michigan Business & Finance Operation, has peppered NFPA 70 technical committees writing the 2016-2026 National Electric Code with proposals to reduce the size of building premise feeder infrastructure; accommodating the improvements made in illumination and rotating machinery energy conservation since the 1980’s (variable frequency drives, LED lighting, controls, etc.)

These proposals are routinely voted down in 12-20 member committees representing manufacturers (primarily) though local inspection authorities are complicit in overbuilding electric services because they “bill by the service panel ampere rating”.  In other words, when a municipality can charge a higher inspection fee for a 1200 ampere panel, what incentive is there to support changes to the NEC that takes that inspection fee down to 400 amperes?

The energy conservation that would result from the acceptance of our proposals into the NEC are related to the following: reduced step down transformer sizes, reduced wire and conduit sizes, reduced panelboard sizes, reduced electric room cooling systems — including the HVAC cooling systems and the ceiling plenum sheet metal carrying the waste heat away.   Up to 20 percent energy savings is in play here and all the experts around the table know it.   So much for the economic footprint of the largest non-residential building construction market in the United States — about $120 billion annually.

The market incumbents are complicit in ignoring energy conservation opportunity.  To paraphrase one of Mike Anthony’s colleagues representing electrical equipment manufacturers:

“You’re right Mike, but I am getting paid to vote against you.”

NFPA Electrical Division knows it, too.

University of Michigan

 

Rightsizing Commercial Electrical Power Systems: Review of a New Exception in NEC Section 220.12

Michael A. AnthonyJames R. Harvey

University of Michigan, Ann Arbor

Thomas L. Harman

University of Houston, Clear Lake, Texas

For decades, application of National Electrical Code (NEC) rules for sizing services, feeders and branch circuits has resulted in unused capacity in almost all occupancy classes. US Department of Energy data compiled in 1999 indicates average load on building transformers between 10 and 25 percent. More recent data gathered by the educational facilities industry has verified this claim. Recognizing that aggressive energy codes are driving energy consumption lower, and that larger than necessary transformers create larger than necessary flash hazard, the 2014 NEC will provide an exception in Section 220.12 that will permit designers to reduce transformer kVA ratings and all related components of the power delivery system. This is a conservative, incremental step in the direction of reduced load density that is limited to lighting systems. More study of feeder and branch circuit loading is necessary to inform discussion about circuit design methods in future revisions of the NEC.

CLICK HERE for complete paper

University of Houston

2026 National Electrical Code Workspace

Construction Technology Careers: Carpentry, HVAC, Plumbing

October 23, 2024
[email protected]
,
No Comments

Construction Technology Careers: Carpentry, HVAC, Plumbing

Standards Colorado

One study, published in the Journal Social Forces in 2012, found that women’s educational preferences for a potential partner have been changing over time. The study found that in the 1960s and 1970s, women were more likely to prefer men with higher levels of education than themselves, while in the 1990s and 2000s, women were more likely to prefer partners with similar levels of education. The study also found that women’s educational preferences were influenced by their own educational attainment and the gender ratio of their college campus.

Another study, published in the journal Demography in 2015, found that women’s educational preferences for a potential partner varied depending on their own educational background and the gender ratio of their local area. The study found that women with higher levels of education were more likely to prefer men with similar levels of education, while women with lower levels of education were more likely to prefer men with higher levels of education. The study also found that women in areas with a higher ratio of men to women were more likely to prefer men with higher levels of education.

While these studies suggest that young women’s preferences for college-educated men as marriage partners may be influenced by a variety of factors, it is important to recognize that individual preferences and behaviors can vary widely and are influenced by a wide range of factors. Additionally, any generalizations about the preferences of “young women” or any other group should be approached with caution, as these preferences can vary widely depending on factors such as age, race, ethnicity, and socioeconomic status.

Data Centers

October 22, 2024
[email protected]
No Comments

"One day ladies will take their computers for walks in the park and tell each other, "My little computer said such a funny thing this morning" - Alan Turing

Data centers in colleges and universities are crucial for supporting the extensive technological infrastructure required for modern education and research. These centers house critical servers and storage systems that manage vast amounts of data, ensuring reliable access to academic resources, administrative applications, and communication networks. They enable the secure storage and processing of sensitive information, including student records, faculty research, and institutional data.

Uptime Institute Tier Classification

Moreover, data centers facilitate advanced research by providing the computational power needed for data-intensive studies in fields like bioinformatics, climate science, and artificial intelligence. They support virtual learning environments and online course management systems, essential for the increasingly prevalent hybrid and online education models. Efficient data centers also contribute to campus sustainability goals by optimizing energy use through modern, eco-friendly technologies.

ANSI/TIA 942 Data Center Infrastructure Standard

Additionally, robust data center infrastructure enhances the university’s ability to attract top-tier faculty and students by demonstrating a commitment to cutting-edge technology and resources. They also play a vital role in disaster recovery and business continuity, ensuring that educational and administrative functions can resume quickly after disruptions. Overall, data centers are integral to the academic mission, operational efficiency, and strategic growth of colleges and universities.

We have followed development of the technical standards that govern the success of these “installations” since 1993; sometimes nudging technical committees — NFPA, IEEE, ASHRAE, BICSI and UL.   The topic is vast and runs fast so today we will review, and perhaps respond to, the public consultations that are posted on a near-daily basis.  Use the login credentials at the upper right of our home page.

Data Center Growth

Gallery: Supercomputers & Data Centers

Data Center Wiring

Datacenter Architecture

Power Management For Data Centers Challenges And Opportunities

Data Center Operations & Maintenance

Inauguration of New Supercomputer

Big Data Applications in Edge-Cloud Systems

Supercomputer Tour

 

Data Center Wiring

October 22, 2024
[email protected]
,
No Comments

The bookwheel, also known as a revolving bookcase, was invented by an Italian scholar and polymath named Agostino Ramelli. Ramelli was born in 1531 in Ponte Tresa, a town in present-day Italy, and he lived during the Renaissance period.

Ramelli’s invention, described in his work titled “Le diverse et artificiose machine del capitano Agostino Ramelli” (The Various and Ingenious Machines of Captain Agostino Ramelli), was published in 1588. This book showcased a collection of 195 mechanical devices.  

Ramelli’s work contributed to the growing interest in mechanical inventions during the Renaissance period. His bookwheel design remains a fascinating example of early engineering and ingenuity, highlighting the desire for knowledge and practical solutions in the pursuit of learning and scholarly endeavors.

“Bookwheel” Early Data Center

The standard of care for wiring safety for data centers —  a continually expanding presence in education communities even before the pandemic  — is established in National Electrical Code Articles 645 (Information Technology Equipment), Article 646 (Modular Data Centers) and Article 647 (Sensitive Electronic Equipment).   You will notice that these articles cover the topic comprehensively and bear the imprint of competing Producer-Interest groups.  There are no User-Interest representatives on Code-Making Panel 12 that represent the final fiduciary in education communities even though education communities are one of the largest markets for information and communication technology systems.

The current version of NFPA 70 is linked below:

2023 National Electrical Code

Transcripts  of technical committee action during the 2026 revision (CMP-16) are linked below because they will inform our recommendations for the 2026 National Electrical Code.  Keep in mind that the Technical Correlating Committee is moving content around the Code in order to make the NEC easier to use by experts.

CMP-16 First Draft Report | Public Input with Committee Response 

CMP-16 Second Draft Report

The transcripts of technical committee action during the 2023 revision are linked below because they will inform our recommendations for the 2026 National Electrical Code.

Code‐Making Panel 12 Public Input Report

Code-Making Panel 12 Public Comment Report

National Electrical Code CMP-12

We will use these in our exploration of what we might propose for improvements in the 2026 revision.  Public comment on the First Draft of the 2026 Edition will be received until August 28th.

The issues that have been in play in these articles of the NEC are familiar to veterans of the “food fight” – occupancy classification, cable specifications, fire protection, ventilation, energy consumption, surge protection, licensing of engineers. etc.  We look for market-making excesses by opposing stakeholders that seek to limit their risk while raising the (financial) risk to education communities.

We encourage our colleagues to participate in the NFPA code development process directly.  We also encourage stakeholders in education communities — students, faculty and staff  to join us during any of the teleconferences we co-host with the IEEE Education & Healthcare Facilities Committee 4 times monthly in both European and American time zones.   See our CALENDAR for the next online meeting.

"One day ladies will take their computers for walks in the park and tell each other, "My little computer said such a funny thing this morning" - Alan Turing

 

Related standards:

NFPA 75: Standard for the Fire Protection of Information Technology Equipment

2024 International Building Code: Special Detailed Requirements Based on Occupancy and Use

2024 International Building Code: Section 304.1 Business Group B

Health 400 | OB-GYN

October 21, 2024
[email protected]
, ,
No Comments

National Center for Health Statistics: Birth Data Files

Today we break down regulations, codes, standards and open-source literature governing the safety and sustainability of university-affiliated medical research and healthcare delivery facilities.  Because of the complexity of the topic we break down our coverage:

Health 200.   Survey of all relevant codes, standards, guidelines and recommended practices for healthcare settings.

Health 400.  All of the above with special consideration needed for obstetrics, gynecological and neonatal clinical practice and research.

Today we confine our interest to systems — water, power, telecommunication and security; for example — that are unique to campus-configured, city-within-city risk aggregations.  Electrotechnologies (voltage stability, static electricity control, radio-interference, etc.) in these enterprises are subtle, complex and high risk.  Sample titles from legacy best practice literature in this domain are listed below:

American College of Obstetricians and Gynecologists: Levels of Maternal Care

Provision of Care, Treatment, and Services standards for maternal safety

Since our interest lies in the habitable spaces for these enterprises we usually start with a scan of the following titles:

International Building Code Section 407 (Institutional Group I-2) identifies requirements specific to healthcare settings, covering aspects such as fire safety, means of egress, and smoke compartments. Maternity and obstetric facilities within hospitals fall under this classification.

K-TAG Matrix for Healthcare Facilities

NFPA 70 National Electrical Code Article 517

NFPA 99 Healthcare Facilities Code

NFPA 101 Life Safety Code Chapters 18 & 19

ASHRAE 170 Ventilation of Healthcare Facilities

ASHRAE 189.3: Design, Construction and Operation of Sustainable High Performance Health Care Facilities

Relevant Institute of Electrical and Electronic Engineers research

Towards Deeper Neural Networks for Neonatal Seizure Detection

A System to Provide Primary Maternity Healthcare Services in Developing Countries

Deep Learning for Continuous Electronic Fetal Monitoring in Labor

Reorganizing of University Hospital of Oran’s operating theatre: Simulation approach

Finally, we collaborate with the IEEE E&H Committee on the following IEC committee projects from IEC/TC 62 Electrical equipment in medical practice:

– Common aspects of electrical equipment used in diagnostic imaging equipment

– Equipment for radiotherapy, nuclear medicine and radiation dosimetry

– Electromedical equipment for neonatal care

 

More

Journal of Healthcare Management Standards: Operational Resilience of Hospital Power Systems in the Digital Age

Health Insurance Portability and Accountability Act (HIPAA)

Health care cost as percentage of Gross Domestic Product for six representative nations.

Association of Academic Health Centers

International Conference on Harmonization: The ICH guidelines provide guidance on the development of pharmaceuticals and related substances, including clinical trials, drug safety, and efficacy.

Animal Welfare Act and the Institutional Animal Care and Use Committee

Good Laboratory Practice: GLP is a set of principles that ensure the quality and integrity of non-clinical laboratory studies. It ensures that data generated from non-clinical laboratory studies are reliable, valid, and accurate.

International Code Council Representation of Interests

University of Chicago

Radio 300

October 18, 2024
[email protected]

No Comments

“The wireless age has brought us closer together,

yet we must work to ensure that it does not divide us.”

— Guglielmo Marconi

“Mathematical Theory of Electrodynamic Phenomena, Uniquely Deduced from Experience.” 1820 André-Marie Ampère

 

When the electric grid and the internet are down and there is no cell service, radio can still work to help communities stabilize.   Starting 2024 we will break down our coverage of the radio frequency technology standards used in educational settlements into into two categories:

Radio 300: Security and maintenance radio.  These usually use a single radio channel and operate in a half-duplex mode: only one user on the channel can transmit at a time, so users in a user group must take turns talking. The radio is normally in receive mode so the user can hear all other transmissions on the channel. When the user wants to talk he presses a “push-to-talk” button, which turns off the receiver and turns on the transmitter; when he releases the button the receiver is activated again. Multiple channels are provided so separate user groups can communicate in the same area without interfering with each other.

Note that a core title in this domain — NFPA 1802 Standard on Two-Way, Portable RF Voice Communications Devices for Use by Emergency Services Personnel in the Hazard Zone — is part of an NFPA catalog reorganization.  Best practice content will be rolled into NFPA 1300 Standard on Fire and Emergency Service Use of Thermal Imagers, Two-Way Portable RF Voice Communication Devices, Ground Ladders, and Fire Hose, and Fire Hose Appliances.  

As of this posting APCO International has no public consultations on any titles in its public safety radio standards catalog.  (Association of Public Safety Communications Officials Standards Catalog)

Shawnee Mission West High School

The IT Law Wiki: Spectrum Allocation

Radio 400: Student radio.  College radio stations are typically considered to be public radio radio stations in the way that they are funded by donation and grants.  The term “Public radio” generally refers to classical music, jazz, and news. A more accurate term is community radio, as most staff are volunteers, although many radio stations limit staff to current or recent students instead of anyone from the local community.  There has been a fair amount of drama over student-run radio station history; a topic we steer away from.

The Low Power FM radio service was created by the Commission in January 2000.  LPFM stations are authorized for noncommercial educational broadcasting only (no commercial operation) and operate with an effective radiated power (ERP) of 100 watts (0.1 kilowatts) or less, with maximum facilities of 100 watts ERP at 30 meters (100 feet) antenna height above average terrain.  The approximate service range of a 100 watt LPFM station is 5.6 kilometers (3.5 miles radius).  LPFM stations are not protected from interference that may be received from other classes of FM stations.

We follow — but do not respond — to consultations on titles covering the use of radio frequencies for the Internet of Things.  At the moment, most of that evolution happens at the consumer product level; though it is wise to contemplate the use of the electromagnetic spectrum during widespread and extended loss of broadband services.

Maxwell equations: Four lines that provide a complete description of light, electricity and magnetism

We do not include policy specifics regarding the migration of National Public Radio beyond cultural content into political news; though we acknowledge that the growth of publicly financed radio domiciled in education communities is a consideration in the technology of content preparation informed by the Public Broadcasting Act of 1967.

Sacred Heart University / Campus Public Safety & National Public Radio Studios / SGA Architects

We drill into technical specifics of the following:

  • Radios used for campus public safety and campus maintenance
  • Student-run campus radio stations licensed by the Federal Communications Commission as Low Power FM (LPFM)
  • Facilities for regional broadcast of National Public Radio operating from education communities
  • Off-campus transmission facilities such as broadcast towers.
  • Grounding, bonding, lightning protection of transmission and receiving equipment on buildings
  • Broadcast studio electrotechnologies

Radio technology is regulated by the Federal Communications Commission with no ANSI-accredited standards setting organizations involved in leading practice discovery and promulgation.  Again, we do not cover creative and content issues.  Join us today at 11 AM/ET using the login credentials at the upper right of our home page.


More

List of campus radio stations

International Telecommunications Union: News Magazine No.1 2022

International Electrotechnical Commission TC 103: Transmitting and receiving equipment for radiocommunications

International Special Committee on Radio Interference

NFPA 1802: Standard on Two-Way, Portable RF Voice Communications Devices for Use by Emergency Services Personnel in the Hazard Zone

Campus Safety Radio JVCKENWOOD CAMPUS SAFETY 5 TIPS TO LOWER COSTS

Voice Communications Devices for Use by Emergency Services

October 18, 2024
[email protected]
No Comments

The frequency differences between public safety radio and public broadcasting radio are mainly due to their distinct purposes and requirements.

  • Public safety radio operates on VHF and UHF bands for emergency services communication These radio systems are designed for robustness, reliability, and coverage over a specific geographic area. They prioritize clarity and reliability of communication over long distances and in challenging environments. Encryption may also be employed for secure communication.
  • Public broadcasting radio operates on FM and AM bands for disseminating news, entertainment, and cultural content to the general public.  These radio stations focus on providing a wide range of content, including news, talk shows, music, and cultural programming. They often cover broad geographic areas and aim for high-quality audio transmission for listener enjoyment. Unlike public safety radio, public broadcasting radio stations typically do not require encryption and prioritize accessibility to the general public.

Standard on Fire and Emergency Service Use of Thermal Imagers, Two-Way Portable RF Voice Communication Devices, Ground Ladders, and Fire Hose, and Fire Hose Appliances

NFPA 1930 is in a custom cycle due to the Emergency Response and Responder Safety Document Consolidation Plan (consolidation plan) as approved by the NFPA Standards Council.  As part of the consolidation plan, NFPA 1930 is combining Standards NFPA 1801, NFPA 1802, NFPA 1932, NFPA 1937, and NFPA 1962.

Firefighter radio communication faces several special technical challenges due to the nature of the environment they operate in and the criticality of their tasks. Here are some of the key challenges:

  1. Interference and Signal Degradation: Buildings, debris, and firefighting equipment can obstruct radio signals, leading to interference and degradation of communication quality.
  2. Multipath Propagation: Radio signals can bounce off surfaces within buildings, causing multipath propagation, which results in signal fading and distortion.
  3. Limited Bandwidth: Firefighter radio systems often operate on limited bandwidths, which can restrict the amount of data that can be transmitted simultaneously, impacting the clarity and reliability of communication.
  4. Noise: The high noise levels present in firefighting environments, including sirens, machinery, and fire itself, can interfere with radio communication, making it difficult for firefighters to hear and understand each other.
  5. Line-of-Sight Limitations: Radio signals typically require a clear line of sight between the transmitter and receiver. However, in complex urban environments or within buildings, obstructions such as walls and floors can obstruct the line of sight, affecting signal strength and reliability.
  6. Equipment Durability: Firefighter radio equipment needs to withstand harsh environmental conditions, including high temperatures, smoke, water, and physical impacts. Ensuring the durability and reliability of equipment in such conditions is a significant challenge.
  7. Battery Life: Prolonged operations in emergency situations can drain radio batteries quickly. Firefighters need reliable battery life to ensure continuous communication throughout their mission.
  8. Interoperability: Different emergency response agencies may use different radio systems and frequencies, leading to interoperability issues. Ensuring seamless communication between various agencies involved in firefighting operations is crucial for effective coordination and response.
  9. Priority Access: During large-scale emergencies, such as natural disasters or terrorist attacks, communication networks may become congested, limiting access for emergency responders. Firefighters need priority access to communication networks to ensure they can effectively coordinate their efforts.
  10. Training and Familiarity: Operating radio equipment effectively under stress requires training and familiarity. Firefighters must be trained to use radio equipment efficiently and effectively, even in challenging conditions, to ensure clear and concise communication during emergencies.

National Institute of Standards & Technology

Testing of Portable Radios in a Fire Fighting Environment

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content