Du froid

Loading
loading...

Du froid

January 7, 2026
mike@standardsmichigan.com
, , , ,
No Comments

“Weather is fate”

Charles Louis de Secondat, Baron de La Brède et de Montesquieu

“Road to Versailles at Louveciennes” 1869 Camille Pissarro

Heat tracing is a process used to maintain or raise the temperature of pipes and vessels in order to prevent freezing, maintain process temperature, or ensure that products remain fluid and flow through the system properly.  Without electric heat tracing; much of the earth would be uninhabitable.

Heat tracing works by using an electric heating cable or tape that is wrapped around the pipe or vessel, and then insulated to help retain the heat. The heating cable is connected to a power source and temperature control system that maintains the desired temperature by regulating the amount of heat output from the cable. Heat tracing is commonly used in industrial applications where temperature control is critical, such as in chemical plants, refineries, and oil and gas facilities.

There are several types of heat tracing, including electric heat tracing, steam tracing, and hot water tracing, each of which have their own unique advantages and disadvantages. The selection of the appropriate type of heat tracing depends on the specific application and the required temperature range, as well as factors such as cost, maintenance, and safety considerations.

Heat Tracing for Piping SpecificationNECA Standards (N.B. Link unstable)

2026 NEC CMP-17 Public Input Report | 2026 NEC CMP-17 Second Draft Report

Northern Michigan University | Marquette County

Today we review the literature for snow and ice management (and enjoyment) produced by these standards-setting organizations:

Accredited Snow Contractors Association

American Society of Civil Engineers

American Society of Mechanical Engineers

ASTM International

FM Global

Destructive Deep Freeze Strikes Cold and Hot Regions Alike

Institute of Electrical & Electronic Engineers

Electrical Heat Tracing: International Harmonization — Now and in the Future

International Code Council

International Building Code: Chapter 15 Roof Assemblies and Rooftop Structures

National Electrical Contractors Association

National Fire Protection Association

Winter is Coming: Is Your Facility Protected? (Holly Burgess, November 2022)

National Electrical Code: Articles 426-427

National Floor Safety Institute

Snow and Ice Management Association

Underwriters Laboratories

Manufacturers:

Chromalox Electrical Heat Tracing Systems Design Guide



It is a surprisingly large domain with market-makers in every dimension of safety and sustainability; all of whom are bound by state and federal regulations.

Join us at 16:00 UTC with the login credentials at the upper right of our home page.


There have been several recent innovations that have made it possible for construction activity to continue through cold winter months. Some of the most notable ones include:

  1. Heated Job Site Trailers: These trailers are equipped with heating systems that keep workers warm and comfortable while they take breaks or work on plans. This helps to keep morale up and prevent cold-related health issues.
  2. Insulated Concrete Forms (ICFs): ICFs are prefabricated blocks made of foam insulation that are stacked together to form the walls of a building. The foam insulation provides an extra layer of insulation to keep the building warm during cold winter months.
  3. Warm-Mix Asphalt (WMA): WMA is a type of asphalt that is designed to be used in colder temperatures than traditional hot-mix asphalt. This allows road construction crews to work through the winter months without having to worry about the asphalt cooling and becoming unusable.
  4. Pneumatic Heaters: These heaters are used to warm up the ground before concrete is poured. This helps to prevent the concrete from freezing and becoming damaged during the winter months.
  5. Electrically Heated Mats: These mats are placed on the ground to prevent snow and ice from accumulating. This helps to make the job site safer and easier to work on during the winter months.

Overall, these innovations have made it possible for construction crews to work through the winter months more comfortably and safely, which has helped to keep projects on schedule and minimize delays.

Somewhat related:

Building Construction in Cold Weather

January 7, 2026
mike@standardsmichigan.com
No Comments

AI Generated | See our LIVE construction cameras

Much of our assertion that building construction in education communities resembles a perpetual motion machine rests upon innovation in a broad span of technologies that is effectively weather resistant; that along with development of construction scheduling. Today at 16:0 UTC we review the technical, management and legal literature that supports safe and sustainable construction,

1. Cold-Weather Concrete Technology

    • Accelerating Admixtures: These are chemical additives that speed up the curing process of concrete, allowing it to set even in low temperatures.
    • Heated Concrete Blankets: Electric blankets that maintain a consistent temperature around freshly poured concrete.
    • Hot Water Mixing: Using heated water during the mixing process to ensure that concrete maintains the proper temperature for curing.
    • Air-Entrained Concrete: Helps resist freeze-thaw cycles by creating tiny air pockets in the concrete.

2. Temporary Heating Solutions

    • Portable Heaters: Diesel, propane, or electric heaters used to maintain a warm environment for workers and materials.
    • Enclosed Workspaces: Temporary enclosures (tents or tarps) around construction areas retain heat and shield against snow and wind.

3. Advanced Building Materials

    • Cold-Weather Asphalt: Modified asphalt that can be laid at lower temperatures.
    • Pre-fabricated Components: Factory-assembled parts (walls, beams) that reduce on-site work in harsh conditions.

4. Insulation Techniques

    • Insulated Tarps and Blankets: Used to cover construction materials and newly laid concrete to prevent freezing.
    • Frost-Protected Shallow Foundations: Insulation techniques to keep ground temperatures stable and prevent frost heave.

5. Ground Thawing Technologies

    • Hydronic Ground Heaters: Circulate heated fluid through hoses laid on frozen ground to thaw it before excavation or foundation work.
    • Steam Thawing: Direct steam application to melt snow or thaw frozen soil.

6. Lighting Solutions

    • High-Intensity LED Lights: Compensate for reduced daylight hours to ensure safe and efficient work conditions.

7. Weather-Resistant Machinery

    • Winterized Equipment: Construction equipment with heated cabins, antifreeze systems, and enhanced traction for icy conditions.

8. Workforce Adaptations

    • Cold-Weather Gear: Heated clothing, gloves, and footwear keep workers safe and productive.
    • Modified Work Schedules: Shorter shifts or daytime-only work to limit exposure to extreme cold.

9. Snow and Ice Management

    • Deicing Solutions: Chemical deicers and mechanical snow-removal equipment keep work areas safe and accessible.
    • Heated Surfaces: Embedded heating systems in ramps or entryways prevent ice buildup.

The Occupational Safety and Health Administration does not have a specific regulation solely dedicated to building construction in cold winter weather. However, several OSHA standards and guidelines are applicable to address the hazards and challenges of winter construction work. These regulations focus on worker safety, protection from cold stress, proper equipment use, and general site safety. Key applicable OSHA regulations and guidance include:

1. Cold Stress and Temperature Exposure

  • General Duty Clause (Section 5(a)(1)): Employers are required to provide a workplace free from recognized hazards likely to cause death or serious physical harm. This includes addressing cold stress hazards, such as hypothermia, frostbite, and trench foot.
  • OSHA Cold Stress Guide: OSHA provides guidance on recognizing, preventing, and managing cold stress but does not have a specific cold stress standard.

2. PPE (Personal Protective Equipment)

  • 29 CFR 1926.28: Requires employers to ensure the use of appropriate personal protective equipment.
  • 29 CFR 1910.132: General requirements for PPE, including insulated gloves, boots, and clothing to protect against cold weather.

3. Walking and Working Surfaces

  • 29 CFR 1926.501: Fall Protection in Construction. Ice and snow can increase fall risks, so proper precautions, including removal of hazards and use of fall protection systems, are required.
  • 29 CFR 1926.451: Scaffolding. Specific safety measures must be implemented to ensure stability and secure footing in icy conditions.

4. Snow and Ice Removal

  • Hazard Communication Standard (29 CFR 1910.1200): Ensures workers are informed about hazards related to de-icing chemicals or other substances used in winter construction.

5. Powered Equipment

  • 29 CFR 1926.600: Equipment use, requiring machinery to be properly maintained and adjusted for cold-weather operations, including anti-freeze measures and winterization.

6. Excavations and Frost Heave

  • 29 CFR 1926.651 and 1926.652: Excavation standards. Frozen ground and frost heave pose additional risks during trenching and excavation activities.

7. Temporary Heating

  • 29 CFR 1926.154: Requirements for temporary heating devices, including ventilation and safe usage in confined or enclosed spaces.

8. Illumination

  • 29 CFR 1926.56: Lighting standards to ensure sufficient visibility during reduced daylight hours in winter.

9. Emergency Preparedness

  • First Aid (29 CFR 1926.50): Employers must ensure quick access to first aid, especially critical for treating cold-related illnesses or injuries.

10. Hazard Communication and Training

  • 29 CFR 1926.21(b): Employers must train employees on recognizing winter hazards, such as slips, trips, falls, and cold stress.

By following these OSHA standards and implementing additional best practices (e.g., scheduling breaks in heated shelters, providing warm beverages, and encouraging layered clothing), employers can ensure a safer construction environment during winter conditions.


Related:

Snow Load

Electrical heat tracing: international harmonization-now and in the future

Heat Tracing Installation

Pipe Heating

Snow & Ice Management

Incredible snow removal

January 7, 2026
mike@standardsmichigan.com
, , ,
No Comments

Snow Load Calculator

January 7, 2026
mike@standardsmichigan.com
No Comments

“Among famous traitors of history one might mention the weather.”

Ilka Chase, The Varied Airs of Spring

 

Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-22)

ASCE Hazard Tool

Quick & Dirty Snow Load Calculator

Call for public proposals for the 2028 edition

Structural Design

 

 

Provision of Slip Resistance on Walking/Working Surfaces

2029 National Electrical Code Panel 4

January 6, 2026
mike@standardsmichigan.com
No Comments

Electrical Safety Stack

Brown University Electrical Design Criteria | Information Technology Resources Policy

§

The University of Michigan has supported the voice of the United States education facility industry since 1993 — the second longest tenure of any voice in the United States.  That voice has survived several organizational changes but remains intact and will continue its Safer-Simpler-Lower Cost-Longer Lasting priorities on Code Panel 3 in the 2029 Edition.

Today, during our customary “Open Door” teleconference we will examine the technical concepts under the purview of Code Panel 4; among them:

Article 690 Solar Photovoltaic (PV) Systems

Article 691 Large-Scale Photovoltaic (PV) Electric Supply Stations

Article 694 Wind Electric Systems

Article 705 Interconnected Electric Power Production Sources

Article 710 Stand-Alone Systems

Public Input on the 2029 Edition will be received until April 9, 2026.

Related:
  • Since the lifespan of educational buildings make the building core and shell susceptible to multiple changes not typically associated with commercial buildings, additional pathways should be placed in areas where the core and shell components of the facility are likely to re-main for extended periods of time
  • It is recommended that all areas of an educational building have wireless coverage unless prohibited

Electrical installations and Protection Against Electric Shock

January 6, 2026
mike@standardsmichigan.com
, ,
No Comments

IEC 60364-1:2025 (6th edition, published September 5, 2025) replaces the 2005 edition (5th edition). This is a major technical revision with significant changes which we will cover throughout 2026 — after NESC and NEC work

“View of Lake Geneva” 1881 Gustave Courbet

Technical Committee 64 develops the International Electrotechnical Commission consensus product that covers similar territory for the global electrical power industry as NFPA 70 (National Electrical Code).   Keep in mind that the safety traditions of the NFPA suite of consensus products are inspired by fire safety considerations.   IEC 60363 Electrical installations and protection against electric shock — the parent document that applies to the wiring systems of education and healthcare facilities — was inspired from voltage safety.

TC 64 Strategic Business Plan

The scope of IEC 60364 is reproduced below:

– concerning protection against electric shock arising from equipment, from installations and from systems without limit of voltage,
– for the design, erection foreseeable correct use and verification of all kind of electrical installations at supply voltage up to 1 kV a.c or 1,5 kV d.c., except those installations covered by the following IEC committees: TC 9, TC 18, TC 44, TC 97, TC99
– in co-ordination with TC 99, concerning requirements additional to those of TC 99 for the design, erection and verification of electrical installations of buildings above 1kV up to 35kV.

The object of the standards shall be:
– to lay down requirements for installation and co-ordination of electrical equipment
– to lay down basic safety requirements for protection against electric shock for use by technical committees
– to lay down safety requirements for protection against other hazards arising from the use of electricity
– to give general guidance to IEC member countries that may have need of such requirements
– and to facilitate international exchanges that may be hampered by differences in national regulations.

The standards will not cover individual items of electrical equipment other than their selection for use. Safety Pilot Function: Protection against electric shock.

IEC Preview 60364-1

KUPDF Commentary on 60364 and comparisons with NFPA 70 National Electrical Code

Since neither the USNA National Committee to the IEC (USNA/IEC), nor the US Technical Advisory Administrator (National Electrical Manufacturers Association) has a workspace set up for responding to IEC 60364 calls for public comment, we set one up for ourselves several years ago for education facility and electrical engineering faculty and students:

IEC | USNA IEC Workspace | Updated 12 June 2023

Note that anyone in the world is welcomed to comment upon IEC documents, contingent upon obtaining (free) login credentials.  To review the the strike-and-bold you will need login credentials.   Alternatively, you may click in to the 4-times monthly teleconferences of the IEEE Education & Healthcare Facilities Committee.  See our CALENDAR for the next online meeting.

Colleagues: Mike Anthony, Jim Harvey, Massimo Mittolo, Giuseppe Parise

International Electrotechnical Commission – Central Office – Geneva

Elettrotecnico Lingua Franca

International Zoning Code

January 6, 2026
mike@standardsmichigan.com
, ,
No Comments

2025 Group B Proposed Changes to IZC | Complete Monograph for Changes to I-Codes (2630 pages)

National Association of County Engineers

The purpose of the code is to establish minimum requirements to provide a reasonable level of health, safety, property protection and welfare by controlling the design, location, use or occupancy of all buildings and structures through the regulated and orderly development of land and land uses within this jurisdiction.

CLICK IMAGE

Municipalities usually have specific land use or zoning considerations to accommodate the unique needs and characteristics of college towns:

  1. Mixed-Use Zoning: Cities with colleges and universities often employ mixed-use zoning strategies to encourage a vibrant and diverse urban environment. This zoning approach allows for a combination of residential, commercial, and institutional uses within the same area, fostering a sense of community and facilitating interactions between students, faculty, and residents.
  2. Height and Density Restrictions: Due to the presence of educational institutions, cities may have specific regulations on building height and density to ensure compatibility with the surrounding neighborhoods and maintain the character of the area. These restrictions help balance the need for development with the preservation of the existing urban fabric.
  3. Student Housing: Cities with colleges and universities may have regulations or guidelines for student housing to ensure an adequate supply of affordable and safe accommodations for students. This can
    include requirements for minimum bedroom sizes, occupancy limits, and proximity to campus.
  4. Parking and Transportation: Given the concentration of students, faculty, and staff, parking and transportation considerations are crucial. Cities may require educational institutions to provide parking facilities or implement transportation demand management strategies, such as promoting public transit use, cycling infrastructure, and pedestrian-friendly designs.
  5. Community Engagement: Some cities encourage colleges and universities to engage with the local community through formalized agreements or community benefit plans. These may include commitments to support local businesses, contribute to neighborhood improvement projects, or provide educational and cultural resources to residents.

This is a relatively new title in the International Code Council catalog; revised every three years in the Group B tranche of titles.  Search on character strings such as “zoning” in the link below reveals the ideas that ran through the current revision:

Complete Monograph: 2022 Proposed Changes to Group B I-Codes (1971 pages)

We maintain it on our periodic I-Codes colloquia, open to everyone.  Proposals for the 2026 revision will be received until January 10, 2025.

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE

We maintain it on our periodic I-Codes colloquia, open to everyone with the login credentials at the upper right of our home page.

The City Rises (La città che sale) | 1910 Umberto Boccioni


Related:

“What Happens When Data Centers Come to Town”

Signs, Signs, Signs

  1. Reed v. Town of Gilbert (2015): This Supreme Court case involved a challenge to the town of Gilbert, Arizona’s sign code, which regulated the size, location, and duration of signs based on their content. The court held that the sign code was a content-based restriction on speech and therefore subject to strict scrutiny.
  2. City of Ladue v. Gilleo (1994): In this Supreme Court case, the court struck down a municipal ordinance that banned the display of signs on residential property, except for signs that fell within specific exemptions. The court held that the ban was an unconstitutional restriction on the freedom of speech.
  3. Metromedia, Inc. v. San Diego (1981): This Supreme Court case involved a challenge to a San Diego ordinance that banned off-premises advertising signs while allowing on-premises signs. The court held that the ordinance was an unconstitutional restriction on free speech, as it discriminated against certain types of speech.
  4. City of Ladue v. Center for the Study of Responsive Law, Inc. (1980): In this Supreme Court case, the court upheld a municipal ordinance that prohibited the display of signs on public property, but only if the signs were posted for longer than 10 days. The court held that the ordinance was a valid time, place, and manner restriction on speech.
  5. City of Boerne v. Flores (1997): This Supreme Court case involved a challenge to a municipal sign code that regulated the size, location, and content of signs in the city. The court held that the sign code violated the Religious Freedom Restoration Act, as it burdened the exercise of religion without a compelling government interest.

 

“What Happens When Data Centers Come to Town”

January 6, 2026
mike@standardsmichigan.com

No Comments

What Happens When Data Centers Come to Town

Terry Nguyen | BA Public Policy

Ben Green |Assistant Professor, School of Information and Gerald R. Ford School of Public Policy

Partner | Michigan Environmental Justice Coalition

Introduction. [Abstract].  The rapid growth of data centers, with their enormous energy and water demands, necessitates targeted policy interventions to mitigate environmental impacts and protect local communities. To address these issues, states with existing data center tax breaks should adopt sustainable growth policies for data centers, mandating energy audits, strict performance standards, and renewable energy integration, while also requiring transparency in energy usage reporting. “Renewable energy additionality” clauses should ensure data centers contribute to new renewable capacity rather than relying on existing resources.  If these measures prove insufficient, states should consider repealing tax breaks to slow unsustainable data center growth. States without tax breaks should avoid such incentives altogether while simultaneously implementing mandatory reporting requirements to hold data centers accountable for their environmental impact. Broader measures should include protecting local tax revenues for schools, regulating utility rate hikes to prevent cost-shifting to consumers, and aligning data center energy demands with state climate goals to avoid prolonging reliance on fossil fuels.

Related:

Sharan Kalwani (Chair, Southeast Michigan Section IEEE): AI and Data Center Demand

Gallery: Other Ways of Knowing Climate Change

 

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Standards Michigan
error: Content is protected !!
Skip to content