Ingress

Loading
loading...

Ingress

February 28, 2024
mike@standardsmichigan.com
No Comments

We have shouted from the mountaintops — beginning in the 2002 National Electrical Code and later in the International Building Code — that “ingress” concepts (the opposite of the canonical term “egress”; meaning the way INTO a building during an emergency) should become part of the vocabulary when exploring best practice concepts for security in education settlements.

Alas, so far without success.  Evidently, the term “ingress” has been appropriated by a variant — accessibility — which re-directs the discussion toward the American with Disabilities Act?

What about people who are not disabled who seek to enter a building?

We cite a 1981 study, sponsored by what is now the National Institute of Standards and Technology — Crowd ingress to Places of Assembly: Summary and Proceedings of an Experts’ Workshop –– to enlighten understanding how ingress is different from the term access.

We maintain this topic on all of our Security related colloquia; hosted on days that appear on our CALENDAR.  Use the login credentials at the upper right of our home page.

Entrance door to Standards Michigan Ann Arbor office

Means of Egress

 

 

Exploring technological preventive methods for school shootings

February 28, 2024
mike@standardsmichigan.com

No Comments

North Carolina Agricultural and Technical State University

Exploring technological preventive methods for school shootings

Kelechi M. Ikegwu – Evelyn Sowells – Howard Hardiman

Department of Computer Systems Technology, North Carolina A&T State University

 

ABSTRACT.  The horrific and tragic deaths that have resulted from infamous school shootings have deprived Americans of the sense of security in what has traditionally been a nurturing and safe environment. This paper will discuss different preventive methods for school shootings. The most current preventive methods are examined for fitness based on a variety of school shootings that have occurred in the past. Then a framework for a new school shooting protection device is proposed and evaluated. Concepts from computer vision, anomaly detection, and electromagnetic propulsion are discussed with respect to the proposed framework. Ideally, the goal of the framework presented in this paper is to prevent deaths and injuries from occurring during a school shooting. With the framework, an efficient and comparatively affordable preventive method could be released in the near future.

CLICK HERE to order complete paper

 

K-12 School Security

Campus Outdoor Lighting

February 28, 2024
mike@standardsmichigan.com
,
No Comments

“The Starry Night” | Vincent van Gogh

The IEEE Education & Healthcare Facilities Committee has completed a chapter on recommended practice for designing, building, operating and maintaining campus exterior lighting systems in the forthcoming IEEE 3001.9 Recommended Practice for the Design of Power Systems for Supplying Commercial and Industrial Lighting Systems; a new IEEE Standards Association title inspired by, and derived from, the legacy “IEEE Red Book“.  The entire IEEE Color Book suite is in the process of being replaced by the IEEE 3000 Standards Collection™  which offers faster-moving and more scaleable, guidance to campus power system designers.

Campus exterior lighting systems generally run in the 100 to 10,000 fixture range and are, arguably, the most visible characteristic of public safety infrastructure.   Some major research universities have exterior lighting systems that are larger and more complex than cooperative and municipal power company lighting systems which are regulated by public service commissions.

While there has been considerable expertise in developing illumination concepts by the National Electrical Manufacturers Association, Illumination Engineering Society, the American Society of Heating and Refrigeration Engineers, the International Electrotechnical Commission and the International Commission on Illumination, none of them contribute to leading practice discovery for the actual power chain for these large scale systems on a college campus.   The standard of care has been borrowed, somewhat anecdotally, from public utility community lighting system practice.  These concepts need to be revisited as the emergent #SmartCampus takes shape.

Electrical power professionals who service the education and university-affiliated healthcare facility industry should communicate directly with Mike Anthony (maanthon@umich.edu) or Jim Harvey (jharvey@umich.edu).  This project is also on the standing agenda of the IEEE E&H committee which meets online 4 times monthly — every other Tuesday — in European and American time zones.  Login credentials are available on its draft agenda page.

Issue: [15-199]

Category: Electrical, Public Safety, Architectural, #SmartCampus, Space Planning, Risk Management

Contact: Mike Anthony, Kane Howard, Jim Harvey, Dev Paul, Steven Townsend, Kane Howard


LEARN MORE:

Wires

February 27, 2024
mike@standardsmichigan.com

No Comments

Ampere current flows through copper or aluminum conductor due to the movement of free electrons in response to an applied electric field of varying voltages.   Each copper or aluminum contributes one free electron to the electron sea, creating a vast reservoir of mobile charge carriers. When a potential difference (voltage) is applied across the ends of the conductor, an electric field is established within the conductor. This field exerts a force on the free electrons, causing them to move in the direction of the electric field.  The resulting current flow can be transformed into different forms depending on the nature of the device.

Heating: When current flows through a resistor, it encounters resistance, which causes the resistor to heat up. This is the principle behind electric heaters, toasters, and incandescent light bulbs.

Mechanical Work: Current flowing through an electric motor creates a magnetic field, which interacts with the magnetic field of the motor’s permanent magnets or electromagnets. This interaction generates a mechanical force, causing the motor to rotate. Thus, electrical energy is converted into mechanical energy; including sound.

Light: In an incandescent light bulb, a filament heats up ( a quantum phenomena) due to the current passing through it. This is an example of electrical energy being converted into light energy; including the chemical energy through light emitting diodes

Today we dwell on how conductors are specified and installed in building premise wiring systems primarily; with some attention to paths designed to carry current flowing through unwanted paths (ground faults, phase imbalance, etc).   In the time we have we will review the present state of the best practice literature developed by the organizations listed below:

International Electrotechnical Commission

60304 Low voltage installations: Protection against electric shock

Institute of Electrical and Electronic Engineers

National Electrical Safety Code

Insulated Cable Engineers Association

International Association of Electrical Inspectors

National Fire Protection Association

National Electrical Code

Code Making Panel 6

Transcript of CMP-6 Proposals for 2026 NEC

Other organizations such as the National Electrical Manufacturers Association, ASTM International, Underwriter Laboratories, also set product and installation standards.  Data center wiring; fiber-optic and low-voltage control wiring is covered in other colloquia (e.g. Infotech and Security) and coordinated with the IEEE Education & Healthcare Facilities Committee.

Use the login credentials at the upper right of our home page.


Related:

2017 National Electrical Code § 110.5

Neher-McGrath Calculation: Cable Calculation ampacity and Thermal Analysis

ETAP: Cabling Sizing – Cable Thermal Analysis

 

System Aspects of Electrical Energy

Impedance Grounding for Electric Grid Surviability

Electric Power Availability: Cold Weather Preparedness

Architecture of power systems: Special cases

Outdoor Deicing & Snow Melting

Campus Outdoor Lighting

High Voltage Electric Service

Campus Bulk Electrical Distribution

Electric Power Availability: Cold Weather Preparedness

February 27, 2024
mike@standardsmichigan.com
No Comments

PUBLIC LAW 109–58—AUG. 8, 2005 | ENERGY POLICY ACT OF 2005

Reliability v. Availability

January 25th Joint Meeting of the Nuclear Regulatory Commission and FERC: Docket No. AD06-6-000.  Given the close coupling of electric and natural gas supply with respect to power reliability, the mind boggles at the hostility of the Biden Administration to natural gas anywhere on earth.  Natural gas is critical to generation plant black start capabilities and hospitals, among others.

A selection of the presentations:

“Long Term Reliability Assessment” – Presented by Mark Lauby, Senior Vice President and Chief Engineer, NERC

“Grid Reliability Overview & Updates” – Presented by David Ortiz, Director of the Office of Electric Reliability

“Status of Standards and Implementation for Cold Weather Preparedness and Applicability to Nuclear Plants” – Presented by David Huff, Electrical Engineer, Office of Electric Reliability

“Gas-Electric Coordination Since Winter Storm Uri” – Presented by Heather Polzin, Reliability Enforcement Counsel, Office of Enforcement

“Overview of Power Reactor Activities” – Presented by Andrea Kock, Deputy Office Director for Engineering, NRR

“Grid Reliability Updates” – Presented by Jason Paige, Chief, Long-Term Operations and Modernization Branch, Division of Engineering and External Hazards, NRR

Electrical Resource Adequacy

Related:

Utah State University: History of Probability

Sample Probability and Statistics Problem from Professional Electrical Engineer’s Examination

Loss-of-load-based reliability indices

Chicken and Dumplings

February 26, 2024
mike@standardsmichigan.com

No Comments

Standards Wyoming

Appetite for Knowledge

Cozy Chicken and Dumplings

I-Codes

February 26, 2024
mike@standardsmichigan.com
, , , ,
No Comments

Hephaestus: God of Fire, Metalwork, and Building

Today we survey the broad sweep of the International Code Council catalog of best practice titles; incorporated by reference into public safety regulations in most of the United States.  This session will be a “survey” and “organizational” session when we limit detail and simply identify priority titles and the technical specifics in play over the next twelve months.

Use the login credentials at the upper right of our home page.

2024/2025/2026 International Code Council Code Development Schedule

Complete Monographs (To be posted soon)

International Green Construction Code: Definitions

International Fire Code

Storm Shelters

Hammurabi

International Energy Conservation Code

Sport Occupancies

International Mechanical Code

Higher Education Laboratories

Interior Finishes

Morning Shower

International Building Code | Electrical

Day Care

Stadium & Arena Structural Engineering

Off-Site Construction

K-TAG Matrix for Healthcare Facilities

 

Trowel Trades

February 26, 2024
mike@standardsmichigan.com

No Comments

Bricklayers, sometimes known as masons, are skilled craftsmen that must be physically fit, have a high level of mathematical skill and a love for precision and detail.

 

Bricklaying standards are guidelines and specifications that ensure the quality and safety of bricklaying work. These standards are often established by industry organizations, regulatory bodies, or national building codes. While specific standards may vary by region, some core bricklaying standards include:

Building Codes: Compliance with local building codes is essential. These codes provide regulations for construction practices, including specifications for masonry work. Bricklayers must adhere to the building codes relevant to the specific location of the construction project.

ASTM International Standards: ASTM International (formerly known as the American Society for Testing and Materials) develops and publishes technical standards for various industries, including construction. ASTM standards related to bricklaying cover materials, testing procedures, and construction practices.

Masonry Construction Standards: Organizations like the Masonry Standards Joint Committee (MSJC) in the United States publish standards specifically focused on masonry construction. These standards address topics such as mortar, grout, reinforcement, and structural design considerations.

Quality Control: Standards related to quality control in bricklaying include specifications for mortar mixtures, proper curing of masonry, and guidelines for inspecting finished work. Adherence to these standards helps ensure the durability and longevity of the masonry construction.

Safety Standards: Occupational safety standards, such as those outlined by the Occupational Safety and Health Administration (OSHA) in the United States, are critical for protecting workers on construction sites. These standards cover aspects like fall protection, scaffolding safety, and the proper use of personal protective equipment.

Brick and Block Standards: Standards related to the dimensions, composition, and properties of bricks and concrete blocks are important for achieving structural integrity. These standards specify characteristics such as compressive strength, absorption, and dimensional tolerances.

Construction Tolerances: Tolerances dictate acceptable variations in dimensions and alignments in bricklaying work. These standards help ensure that the finished structure meets design specifications and industry-accepted tolerances.

Testing and Inspection: Standards related to the testing and inspection of masonry work help verify that construction meets specified requirements. This includes procedures for mortar testing, grout testing, and overall quality inspections.

It’s important for bricklayers and construction professionals to be aware of and follow these standards to guarantee the safety, quality, and compliance of their work. Additionally, staying informed about updates to industry standards is crucial as they may evolve over time to reflect advancements in materials, techniques, and safety practices.

St. Olaf College | Dakota County Minnesota

International Building Code Chapter 21: Masonry

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content