Wood

Loading
loading...

Wood

September 19, 2024
mike@standardsmichigan.com
No Comments

American Wood Council

“Arbor Day” 1932 | Grant Wood

Building schoolhouses with wood in the United States had significant practical and cultural implications, particularly during the 18th and 19th centuries. Wood was the most readily available and cost-effective material in many parts of the country. Abundant forests provided a plentiful supply, making it the logical choice for construction. The use of wood allowed communities to quickly and efficiently build schoolhouses, which were often the first public buildings erected in a new settlement.

Wooden schoolhouses were emblematic of the pioneering spirit and the value placed on education in early American society. These structures were often simple, reflecting the modest means of rural communities, but they were also durable and could be expanded or repaired as needed. The ease of construction meant that even remote and sparsely populated areas could establish schools, thereby fostering literacy and learning across the nation.

Moreover, wooden schoolhouses became cultural icons, representing the humble beginnings of the American educational system. They were often the center of community life, hosting social and civic events in addition to serving educational purposes. Today, preserved wooden schoolhouses stand as historical landmarks, offering a glimpse into the educational practices and community life of early America. Their construction reflects the resourcefulness and priorities of the early settlers who valued education as a cornerstone of their communities.

Building schoolhouses with wood presents several technical challenges, including durability, fire risk, maintenance, and structural limitations. Here are the key challenges in detail:

  1. Durability and Weather Resistance:
    • Rot and Decay: Wood is susceptible to rot and decay, especially in humid or wet climates. Without proper treatment and maintenance, wooden structures can deteriorate rapidly.
    • Pests: Termites and other wood-boring insects can cause significant damage, compromising the integrity of the building.
  2. Fire Risk:
    • Combustibility: Wood is highly flammable, increasing the risk of fire. This was a significant concern in historical and rural settings where firefighting resources were limited.
    • Safety Standards: Ensuring that wooden schoolhouses meet modern fire safety standards requires additional measures, such as fire-retardant treatments and the installation of fire suppression systems.
  3. Maintenance:
    • Regular Upkeep: Wooden buildings require frequent maintenance, including painting, sealing, and repairing any damage caused by weather or pests.
    • Cost: Ongoing maintenance can be costly and labor-intensive, posing a challenge for communities with limited resources.
  4. Structural Limitations:
    • Load-Bearing Capacity: Wood has limitations in terms of load-bearing capacity compared to materials like steel or concrete. This can restrict the size and design of the schoolhouse.
    • Foundation Issues: Wooden structures can experience foundation issues if not properly designed and constructed, leading to uneven settling and potential structural damage.
  5. Environmental Impact:
    • Deforestation: The widespread use of wood for construction can contribute to deforestation, which has environmental consequences. Sustainable sourcing practices are essential to mitigate this impact.
  6. Insulation and Energy Efficiency:
    • Thermal Insulation: Wood provides moderate thermal insulation, but additional materials and techniques are often required to ensure energy efficiency and comfort for students and staff.

Despite these challenges, wooden schoolhouses were popular in the past due to the availability of materials and ease of construction. Addressing these technical challenges requires careful planning, use of modern materials and techniques, and regular maintenance to ensure the longevity and safety of wooden schoolhouses.

Related:

Soils and Foundations

Minimum Design Loads and Associated Criteria for Buildings and Other Structures

International Fire Code

Life Safety Code

Storm Shelters

National Design Specification for Wood Construction

September 19, 2024
mike@standardsmichigan.com
No Comments

“The Country School” 1871 Winslow Homer

The 2024 National Design Specification for Wood Construction was developed by AWC’s Wood Design Standards Committee and approved as a standard by ANSI (American National Standards Institute) on October 16, 2023.  The 2024 NDS is referenced in the 2024 International Building Code.

FREE ACCESS

International Code Council Mass Timber: Outcomes of the ICC Tall Wood Ad Hoc Committee

The Old Schoolhouse | Flint Creek Oklahoma


Related:

Researchers Make Wood Stronger than Steel

Construction Technology Careers: Carpentry, HVAC, Plumbing

September 19, 2024
mike@standardsmichigan.com
,
No Comments

Construction Technology Careers: Carpentry, HVAC, Plumbing

Standards Colorado

One study, published in the Journal Social Forces in 2012, found that women’s educational preferences for a potential partner have been changing over time. The study found that in the 1960s and 1970s, women were more likely to prefer men with higher levels of education than themselves, while in the 1990s and 2000s, women were more likely to prefer partners with similar levels of education. The study also found that women’s educational preferences were influenced by their own educational attainment and the gender ratio of their college campus.

Another study, published in the journal Demography in 2015, found that women’s educational preferences for a potential partner varied depending on their own educational background and the gender ratio of their local area. The study found that women with higher levels of education were more likely to prefer men with similar levels of education, while women with lower levels of education were more likely to prefer men with higher levels of education. The study also found that women in areas with a higher ratio of men to women were more likely to prefer men with higher levels of education.

While these studies suggest that young women’s preferences for college-educated men as marriage partners may be influenced by a variety of factors, it is important to recognize that individual preferences and behaviors can vary widely and are influenced by a wide range of factors. Additionally, any generalizations about the preferences of “young women” or any other group should be approached with caution, as these preferences can vary widely depending on factors such as age, race, ethnicity, and socioeconomic status.

LIVECAM: Timber Construction

September 19, 2024
mike@standardsmichigan.com
No Comments

Timber construction offers numerous benefits for university buildings, combining sustainability, aesthetics, and functionality. One of the primary advantages is its environmental impact. Timber is a renewable resource, and modern forestry practices ensure sustainable harvesting. Timber construction also has a lower carbon footprint compared to steel or concrete, as it sequesters carbon dioxide, helping mitigate climate change.

Aesthetically, timber provides a warm, natural look that can enhance the campus environment, creating inviting and inspiring spaces for students and faculty. It can be used in various architectural styles, from traditional to contemporary, offering versatility in design.

Functionally, timber is a strong and durable material. Engineered wood products, such as cross-laminated timber (CLT), provide excellent structural integrity, allowing for larger spans and innovative architectural designs. Timber construction is often faster than traditional methods, reducing construction time and minimizing disruption on campus.

Additionally, timber buildings offer superior thermal insulation properties, contributing to energy efficiency and reducing heating and cooling costs. The acoustic properties of wood also enhance the learning environment by dampening noise and creating quieter spaces.

Related:

Regents approve updated College of Pharmacy building plan

Timber construction begins at College of Pharmacy project

Wood

National Design Specification for Wood Construction

archive

print (“Hello World!”)

September 18, 2024
mike@standardsmichigan.com
, ,
No Comments

Data Points (2023 Estimates for 193 countable nations):

Global Gross Domestic Product (GGDP) ~ $105T

Anglosphere (United States, United Kingdom, Canada, Australia, New Zealand) ~ $31T (or ~32% of GGDP)

United States GDP $27T (or about 1/3rd of GGDP)

 

“Livres des Merveilles du Monde” 1300 | Marco Polo | Bodleian Libraries, University of Oxford

Today we break down consultations on titles relevant to the technology and management of the real assets of education communities in the United States specifically; but with sensitivity to the global education markets where thousands of like-minded organizations also provide credentialing, instruction, research, a home for local fine arts and sport.

We steer away from broad policy issues and steer toward technical specifics of public consultations presented by national member bodies of the International Electrotechnical Commission, the International Organization for Standardization, the International Telecommunications Union and the American National Standards Institute.  If there is a likelihood that the titles published by these workgroups will be incorporated by reference into public safety or sustainability legislation; or integrated into the cost structure of education communities in any other way, we will listen carefully and contribute meaningfully where we can.

International Standard Classification of Education

American National Standards Institute

World Standards Week 2023

Setting the standard: Grange members can be voice of rural users in standardization system

ISO/IEC/ITU coordination – Listing of New Work Items (New: Passwords Required)

New ANSI Education Initiative Supports the Next Generation of Standardization Leaders

International Code Council

2024/2025/2026 ICC CODE DEVELOPMENT SCHEDULE (3/17/2023)

International Zoning Code

International Electrotechnical Commission

International Electrotechnical Commission | CDV Consultations

IEC Open Consultations: 20 December

USNC/IEC  Current Winter 2023

IEC 87th General Meeting | Cairo, 22 – 26 October

Results from IEC General Assembly 2022 | San Francisco

Going All-Electric

Extended Versions  Certain standards are required to be read in tandem with another standard, which is known as a reference (or parent) document. The extended version (EXV) of an IEC Standard facilitates the user to be able to consult both IEC standards simultaneously in a single, easy-to-use document.

Elettrotecnico Lingua Franca

International Telecommunications Union

The case for standardizing homomorphic encryption

Outcomes of the ITU Plenipotentiary Conference

World Radiocommunication Conference

International Standardization Organization

How ISO codes connect the world

New partnership for ISO and ICC

Must-have skills for the green economy

Building Environment Design

A partial list of projects with which we have been engaged as an active participant; starting with the original University of Michigan enterprise in the late 1990’s and related collaborations with IEEE and others: (In BOLD font we identify committees with open consultations requiring a response from US stakeholders before next month’s Hello World! colloquium)

IEC/TC 8, et al System aspects of electrical energy supply

IEC/TC 22 Power electronic systems and equipment

IEC/TC 34 Lighting

IEC/TC 62 Electrical equipment in medical practice

IEC/TC 64 Electrical installations and protection against electric shock

IEC/TC 82 Solar photovoltaic energy systems

IEC/SYC Electrotechnical Aspects of Smart Cities

SyC Smart Energy


Standards Michigan Workspace for IEC/ITU Consultations


ISO/IEC JTC 1 Information Technology, et. al

ISO/TC 205 Building environmental design

ISO/TC 215 Health Informatics

ISO/TC 229 Nanotechnologies

ISO/TC 232 Education and Learning Services

ISO/TC 251 Asset Management

ISO/TC 260 Human Resource Management

ISO/TC 267 Facility Management

ISO/TC 268 Sustainable cities and communities

ISO/TC 274 Light and Lighting

ISO/TC 276 Biotechnology

ISO/TC 301 Energy management and energy savings

ISO/TC 304 Healthcare organization management

ISO/TC 336 Laboratory Design

We collaborate with the appropriate ANSI US TAG; or others elsewhere in academia.   We have begun tracking ITU titles with special attention to ITU Radio Communication Sector.

main( ) {
        printf("hello, world\n");
}

We have collaborations with Rijksuniversiteit Groningen, Sapienza – Università di Roma, Universität Zürich, Universität Potsdam, Université de Toulouse. Universidade Federal de Itajubá, University of Windsor, the University of Alberta, to name a few — most of whom collaborate with us on electrotechnology issues.  Standards Michigan and its 50-state affiliates are (obviously) domiciled in the United States.  However, and for most issues, we defer to the International Standards expertise at the American National Standards Institute

ANSI INTERACTIVE MAP: INTERNATIONAL TRADE & DEVELOPMENT

Use the login credentials at the upper right of our home page.

 

 

These three regions make up 50% of world GDP

 

More

Data Point: Global Construction Market is Expected to Reach $11 trillion by 2031

General Public Participation in ANSI ISO Activities

March 2021 edition of the TMB Communiqué.

ISO/IEC Directives, Part 1

ISO/IEC Directives, Part 1, Consolidated ISO Supplement

International Electrotechnical Commission Annual Report 2019

ISO Update  2021-02-09

ANSI Education & Training Overview

ANSI Guide for US Delegates

ITU Digital Technical Standards


* A “Hello, World!” program generally is a computer program that outputs or displays the message “Hello, World!”. Such a program is very simple in most programming languages (such as Python and Javascript) and is often used to illustrate the basic syntax of a programming language. It is often the first program written by people learning to code. It can also be used as a sanity test to make sure that a computer language is correctly installed, and that the operator understands how to use it.

 

Building Environment Design

September 18, 2024
mike@standardsmichigan.com
, , ,
No Comments

I don’t build in order to have clients.

I have clients in order to build.

Ayn Rand

Google Data Center

 

“Détruire est facile ; construire est difficile.”

— Victor Hugo

 

The highest level of standardization for the building interiors on the emergent #SmartCampus originates in ISO TC 205 — Building Environment Design.  This committee is charged with standards setting in the design of new buildings and retrofit of existing buildings for acceptable indoor environment and practicable energy conservation and efficiency. Building environment design addresses the technical building systems and related architectural aspects, and includes the related design processes, design methods, design outcomes, and design-phase building commissioning. Indoor environment includes air quality, and thermal, acoustic, and visual factors.  The business plan is linked below:

STRATEGIC BUSINESS PLAN ISO/TC 205

Some of the key ideas in the scope of this project are listed below:

– the design of energy-efficient buildings
– building control systems design
– indoor air quality
– indoor thermal environment
– indoor acoustical environment
– indoor visual environment
– radiant heating and cooling systems
– heating and cooling systems
– building commissioning planning
– moisture in buildings

We see many of the foregoing ideas in the catalog of ASHRAE International — ANSI’s US Technical Advisory Group Administrator in this project, as well as a number of others (CLICK HERE).   There are 31 Participating member and 28 Observing member nations.

Generally speaking, ISO consensus products are performance standards and contrast sharply with prescriptive standards in the energy-related domains in the United States.  Prescriptive standards are easy to enforce but difficult to write.  Performance standards are easy to write but difficult to enforce.

Facility managers that oversee building automation units in education communities in the United States are encouraged to participate in the development of ISO 205 by communicating directly with Brian Cox at ASHRAE (bcox@ashrae.org).  We keep all ISO standards on the standing agenda of our periodic Global and AEdificare standards colloquia.  We also maintain this committee’s catalog on the standing agenda of our Mechanical colloquium.  See our CALENDAR for the next online meetings; open to everyone.

Issue: [10-30]

Category: International, Mechanical, Energy, Facility Asset Management

Colleagues: Mike Anthony, Richard Robben, Larry Spielvogel


More

Bygningsinformasjonsmodellering

 

Canadian Parliament Debate on Standards Incorporated by Reference

September 18, 2024
mike@standardsmichigan.com
, , , ,
No Comments

“The Jack Pine” | Tom Thomson (1916) | National Gallery of Canada

 

Originally posted January 2014

In these clips — selected from Canadian Parliamentary debate in 2013 — we observe three points of view about Incorporation by reference (IBR); a legislative drafting technique that is the act of including a second document within a main document by referencing the second document.

This technique makes an entire second (or referenced) document a part of the main document.  The consensus documents in which we advocate #TotalCostofOwnership concepts are incorporated by reference into legislation dealing with safety and sustainability at all levels of government.  This practice — which many consider a public-private partnership — is a more effective way of driving best practices for technology, and the management of technology, into regulated industries.

Parent legislation — such as the Higher Education Act of 1965, the Clean Air Act and the Energy Policy Act – almost always require intermediary bureaucracies to administer the specifics required to accomplish the broad goals of the legislation.  With the gathering pace of governments everywhere expanding their influence over larger parts of the technologies at the foundation of national economies; business and technology standards are needed to secure that influence.  These standards require competency in the application of political, technical and financial concepts; competencies that can only be afforded by incumbent interests who build the cost of their advocacy into the price of the product or service they sell to our industry.  Arguably, the expansion of government is a reflection of the success of incumbents in business and technical standards; particularly in the compliance and conformity industries.

About two years ago, the US debate on incorporation by reference has been taken to a new level with the recent statement released by the American Bar Association (ABA):

16-164-Incorporation-by-Reference-ABA-Resolution-and-Report

The American National Standards Institute responded to the ABA with a statement of its own.

16-164-ANSI-Response-to-ABA-IBR-06-16 (1)

The incorporation by reference policy dilemma has profound implications for how we safely and economically design, operate and maintain our “cities-within-cities” in a sustainable manner but, admittedly, the results are only visible in hindsight over a time horizon that often exceed the tenure of a typical college or university president.

A recent development — supporting the claims of ANSI and its accredited standards developers — is noteworthy:

The National Institute for Standards and Technology (NIST) manages a website — Standards.GOV — that is a single access point for consensus standards incorporated by reference into the Code of Federal Regulations: Standards Incorporated by Reference Database.   Note that this database does not include specific reference to safety and sustainability codes which are developed by standards setting organizations (such as NFPA, ICC, IEEE, ASHRAE and others) and usually incorporated by reference into individual state public safety and technology legislation.


LEARN MORE:

 

Global Positioning System: A Generation of Service to the World

September 18, 2024
mike@standardsmichigan.com
, , ,
No Comments

Citizens of the Earth depend upon United States leadership in this technology for several reasons:

Development: The GPS was originally developed by the US Department of Defense for military purposes, but it was later made available for civilian use. The US has invested heavily in the development and maintenance of the system, which has contributed to its leadership in this area.

Coverage: The GPS provides global coverage, with 24 satellites orbiting the earth and transmitting signals that can be received by GPS receivers anywhere in the world. This level of coverage is unmatched by any other global navigation system.

Accuracy: The US has worked to continually improve the accuracy of the GPS, with current accuracy levels estimated at around 10 meters for civilian users and even higher accuracy for military users.

Innovation: The US has continued to innovate and expand the capabilities of the GPS over time, with newer versions of the system including features such as higher accuracy, improved anti-jamming capabilities, and the ability to operate in more challenging environments such as indoors or in urban canyons.

Collaboration: The US has collaborated with other countries to expand the reach and capabilities of the GPS, such as through the development of compatible navigation systems like the European Union’s Galileo system and Japan’s QZSS system.

United States leadership in the GPS has been driven by a combination of investment, innovation, collaboration, and a commitment to improving the accuracy and capabilities of the system over time.

Timing Applications: GPS.GOV

Suggested Functional Specifications for a GPS-Synchronized Clock System using Network Time Protocol and Power over Ethernet

Construction Specifications for Exterior Clocks

Seamless positioning system using GPS and beacons for community service robot

Global Positioning System: Monitoring the Fuel Consumption in Transport Distribution

Smart Cities: Wicked Problems

September 18, 2024
mike@standardsmichigan.com
,
No Comments

“Oxford from the River with Christ Church in the Foreground” | William Turner (1820)

 

Smart cities: moving beyond urban cybernetics to tackle wicked problems

Cambridge Journal of Regions, Economy and Society, Volume 8, Issue 1, March 2015 | “The Smart City”

 

Abstract. This article makes three related arguments. First, that although many definitions of the smart city have been proposed, corporate promoters say a smart city uses information technology to pursue efficient systems through real-time monitoring and control. Second, this definition is not new and equivalent to the idea of urban cybernetics debated in the 1970s. Third, drawing on a discussion of Rio de Janeiro’s Operations Center, I argue that viewing urban problems as wicked problems allows for more fundamental solutions than urban cybernetics, but requires local innovation and stakeholder participation. Therefore the last section describes institutions for municipal innovation and IT-enabled collaborative planning.

Layout mode
Predefined Skins
Custom Colors
Choose your skin color
Patterns Background
Images Background
Skip to content