Design, construction, operation and maintenance of environmental air, piping and drainage systems is one of the largest cost centers in education facilities. We find subtle tradeoffs between fire safety, energy conservation and indoor air quality goals. With solid data and enlightened debate which include the user-interest (the final fiduciary in the education facility industry, for example) those tradeoffs are reconciled by technical committees administered by three ANSI-accredited standards developers:
[NFPA 90A] shall cover construction, installation, operation, and maintenance of systems for air conditioning and ventilating, including filters, ducts, and related equipment, to protect life and property from fire, smoke, and gases resulting from fire or from conditions having manifestations similar to fire.
[Explanation A.1.1] An air duct system has the potential to convey smoke, hot gases, and flame from area to area and to supply air to aid combustion in the fire area. For these reasons, fire protection of an air duct system is essential to safety to life and the protection of property. However, an air duct system’s fire integrity also enables it to be used as part of a building’s fire protection system. Guidance for the design of smoke-control systems is provided in NFPA 92, Standard for Smoke Control Systems. Pertinent information on maintenance is provided in Annex B. Maintenance of fire dampers, ceiling dampers, smoke dampers, and combination fire/smoke dampers requirements can be found in NFPA 80, Standard for Fire Doors and Other Opening Protectives, and NFPA 105, Standard for Smoke Door Assemblies and Other Opening Protectives.
The original University of Michigan codes and standards advocacy enterprise spoke loud and clear about duct smoke detector application, control signaling and maintenance requirements from the user point of view. Owing to the re-organization we missed the 2018 revision but we are now recovering from where we left off for the 2021 revision.
The First Draft Report for the 2021 edition is linked below:
NFPA 90A is heavily referenced in an interlocking matrix of related fire safety consensus products but it is not very lengthy document. We include it on the standing agenda of our periodic Mechanical and Prometheus Bound teleconference. See our CALENDAR for the next online meeting.
Issue: [13-118]
Category: Fire Protection, Mechanical
Colleagues: Mike Anthony, Richard Robben, Larry Spielvogel
After architectural trades, the mechanical technologies occupy the largest part of building construction:
HVAC:
Heating Systems: Technologies include furnaces, boilers, heat pumps, and radiant heating systems.
Ventilation Systems: Incorporating technologies like air handlers, fans, and ductwork to ensure proper air circulation.
Air Conditioning Systems: Including central air conditioning units, split systems, and variable refrigerant flow (VRF) systems.
Plumbing:
Water Supply Systems: Involving technologies for water distribution, pumps, and pressure regulation.
Sanitary Systems: Including drainage, sewage systems, and waste disposal technologies.
Fixtures and Faucets: Incorporating technologies for sinks, toilets, showers, and other plumbing fixtures.
Fire Protection:
Fire Sprinkler Systems: Employing technologies like sprinkler heads, pipes, pumps, and water tanks.
Fire Suppression Systems: Including technologies such as gas-based or foam-based suppression systems.
Energy Efficiency Technologies:
Energy Management Systems (EMS): Utilizing sensors, controllers, and software to optimize energy consumption in HVAC systems.
Energy Recovery Systems: Incorporating technologies like heat exchangers to recover and reuse energy from exhaust air.
Building Automation (BAS):
Control Systems: Using sensors, actuators, and controllers to manage and automate various mechanical systems for optimal performance and energy efficiency.
Smart Building Technologies: Integrating with other building systems for centralized control and monitoring.
Materials and Construction Techniques:
Piping Materials: Selecting appropriate materials for pipes and fittings based on the application.
Prefab and Modular Construction: Leveraging off-site fabrication and assembly for mechanical components.
Our examination of the movement in best practice in the mechanical disciplines usually requires an understanding of first principles that appear in the International Building Code
We are waiting for the link to the Complete Monograph for the Group A cycle in which one of our proposals (Chapter 27 Electrical) will be heard at the April 2023 Committee Action Hearings in Orlando.
Superceded:
Because of the larger, disruptive concepts usually require more than one revision cycle — i.e. 3 to 9 years — it is wise to track those ideas in the transcripts of public hearings on the revisions. For example, the ICC Group A Committee Action Hearings were completed (virtually) in May 2021. The complete monograph of proposals is linked below:
Proposals for the 2024 IMC revision will be accepted until January 7, 2024. We maintain this title among our core titles during our periodic Mechanical teleconferences. See our CALENDAR for the next online meeting; open to everyone.
Clean the chicken, put it in a large pot and cover it with cold water. Bring the water to boil.
Add the chicken wings, onions, sweet potato, parsnips, turnips and carrots. Boil about 1 and a half hours. Remove fat from the surface as it accumulates.
Add the parsley and celery. Cook the mixture about 45 min. longer.
Remove the chicken. The chicken is not used further for the soup. (The meat makes excellent chicken parmesan.)
Put the vegetables in a food processor until they are chopped fine or pass through a strainer. Both were performed in the present study.
Add salt and pepper to taste.
(Note: This soup freezes well.) Matzo balls were prepared according to the recipe on the back of the box of matzo meal (Manischewitz).
Today marks the 10th anniversary of Chancellor Jeffrey P. Gold’s remarkable journey with UNMC. Thank you, @jeffreypgold, for your unwavering commitment to excellence and your visionary guidance to the UNMC community. https://t.co/jgGhyMH55rpic.twitter.com/fPxvyMsnz2
— University of Nebraska Medical Center (@unmc) February 1, 2024
Anglosphere (United States, United Kingdom, Canada, Australia, New Zealand) ~ $31T (or ~32% of GGDP)
United States GDP $27T (or about 1/3rd of GGDP)
“Livres des Merveilles du Monde” 1300 | Marco Polo | Bodleian Libraries, University of Oxford
Today we break down consultations on titles relevant to the technology and management of the real assets of education communities in the United States specifically; but with sensitivity to the global education markets where thousands of like-minded organizations also provide credentialing, instruction, research, a home for local fine arts and sport.
“Even apart from the instability due to speculation, there is the instability due to the characteristic of human nature that a large proportion of our positive activities depend on spontaneous optimism rather than on a mathematical expectation, whether moral or hedonistic or economic. Most, probably, of our decisions to do something positive, the full consequences of which will be drawn out over many days to come, can only be taken as the result of animal spirits — a spontaneous urge to action rather than inaction, and not as the outcome of a weighted average of quantitative benefits multiplied by quantitative probabilities. Enterprise only pretends to itself to be mainly actuated by the statements in its own prospectus, however candid and sincere that prospectus may be. Only a little more than an expedition to the South Pole is it based on an exact calculation of benefits to come. Thus if the animal spirits are dimmed and the spontaneous optimism falters, leaving us to depend on nothing but a mathematical expectation, enterprise will fade and die; — though fears of loss may have a basis no more reasonable than hopes of profit had before.”
Extended Versions Certain standards are required to be read in tandem with another standard, which is known as a reference (or parent) document. The extended version (EXV) of an IEC Standard facilitates the user to be able to consult both IEC standards simultaneously in a single, easy-to-use document.
A partial list of projects with which we have been engaged as an active participant; starting with the original University of Michigan enterprise in the late 1990’s and related collaborations with IEEE and others: (In BOLD font we identify committees with open consultations requiring a response from US stakeholders before next month’s Hello World! colloquium)
IEC/TC 8, et al System aspects of electrical energy supply
We collaborate with the appropriate ANSI US TAG; or others elsewhere in academia. We have begun tracking ITU titles with special attention to ITU Radio Communication Sector.
main(){printf("hello, world\n");}
We have collaborations with Rijksuniversiteit Groningen, Sapienza – Università di Roma, Universität Zürich, Universität Potsdam, Université de Toulouse. Universidade Federal de Itajubá, University of Windsor, the University of Alberta, to name a few — most of whom collaborate with us on electrotechnology issues. Standards Michigan and its 50-state affiliates are (obviously) domiciled in the United States. However, and for most issues, we defer to the International Standards expertise at the American National Standards Institute
* A “Hello, World!” program generally is a computer program that outputs or displays the message “Hello, World!”. Such a program is very simple in most programming languages (such as Python and Javascript) and is often used to illustrate the basic syntax of a programming language. It is often the first program written by people learning to code. It can also be used as a sanity test to make sure that a computer language is correctly installed, and that the operator understands how to use it.
We track action in international administrative procedures that affect the safety and sustainability agenda of the education facility industry. From time to time we find product purchasing contracts that contain “boilerplate” requiring conformity to applicable regulations found in the Agreement on Technical Barriers to Trade (TBT). Common examples are found in contracts for the acquisition of information technology and specialty laboratory equipment.
The World Trade Organization TBT Agreement obliges all Parties to maintain an inquiry point that is able to answer questions from interested parties and other WTO Members regarding technical regulations, standards developed by government bodies, and conformity assessment procedures, as well as provide relevant documents. The TBT Agreement also requires that WTO Members notify the WTO of proposed technical regulations and conformity assessment procedures so interested parties can become acquainted with them and have an opportunity to submit written comments.
The Eurocodes are ten European standards (EN; harmonised technical rules) specifying how structural design should be conducted within the European Union. These were developed by the European Committee for Standardization upon the request of the European Commission. The purpose of the Eurocodes is to provide:
A means to prove compliance with the requirements for mechanical strength and stability and safety in case of fire established by European Union law.[2]
A basis for construction and engineering contract specifications.
A framework for creating harmonized technical specifications for building products (CE mark).
Since March 2010 the Eurocodes are mandatory for the specification of European public works and are intended to become the de facto standard for the private sector. The Eurocodes therefore replace the existing national building codes published by national standard bodies, although many countries have had a period of co-existence. Additionally, each country is expected to issue a National Annex to the Eurocodes which will need referencing for a particular country (e.g. The UK National Annex). At present, take-up of Eurocodes is slow on private sector projects and existing national codes are still widely used by engineers.
Eurocodes appear routinely on the standing agendas of several of our daily colloquia, among them the AEDificare, Elevator & Lift and Hello World! colloquia. See our CALENDAR for the next online meeting; open to everyone.
So proud to announce the @ellisoninst is beginning construction on our new campus at the @UniofOxford and broadening our mission: Science & Engineering for Humanity. EIT develops & deploys technology in pursuit of solving four of humanity’s most challenging & enduring problems.… pic.twitter.com/vSkHWSS8EK
“Le Lac Léman ou Près d’Evian au lac de Genève” 1883 François BocionISO and IEC Joint Technical Committee 1 is the work center for international information and communications technology (ICT) standards that are relevant to education communities. In accordance with ISO/IEC JTC 1 and the ISO and IEC Councils, some International Standards and other deliverables are made freely available for standardization purposes.
We at least follow action, and sometimes contribute data and user-interest perspective, to the development of standards produced by several ANSI-accredited ICT standard developing organizations — ATIS, BICSI, IEEE, INCITS, TIA among them. US-based organizations may communicate directly with Lisa Rajchel, ANSI’s ISO/IEC JTC 1 Senior Director for this project: lrajchel@ansi.org. Our colleagues at other educational organizations should contact their national standards body.
We scan the status of Infotech and Cloud standards periodically and collaborate with a number of IEEE Societies. See our CALENDAR for the next online meeting; open to everyone.
Transportation Research Institute Driver Interface Group
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
Abstract. Research problem: Readability equations are widely used to compute how well readers will be able to understand written materials. Those equations were usually developed for nontechnical materials, namely, textbooks for elementary, middle, and high schools. This study examines to what extent computerized readability predictions are consistent for highly technical material – selected Society of Automotive Engineers (SAE) and International Standards Organization (ISO) Recommended Practices and Standards relating to driver interfaces. Literature review: A review of original sources of readability equations revealed a lack of specific criteria in counting various punctuation and text elements, leading to inconsistent readability scores. Few studies on the reliability of readability equations have identified this problem, and even fewer have systematically investigated the extent of the problem and the reasons why it occurs. Research questions:
(1) Do the most commonly used equations give identical readability scores?
(2) How do the scores for each readability equation vary with readability tools?
(3) If there are differences between readability tools, why do they occur?
(4) How does the score vary with the length of passage examined?
ICYMI. The OED has recently been updated with:
new words, phrases and senses added
more than 1,000 entries revised
new audio files and pronunciation transcriptions from Northern England and North-Eastern England
and more!
Ampere current flows through copper or aluminum conductor due to the movement of free electrons in response to an applied electric field of varying voltages. Each copper or aluminum contributes one free electron to the electron sea, creating a vast reservoir of mobile charge carriers. When a potential difference (voltage) is applied across the ends of the conductor, an electric field is established within the conductor. This field exerts a force on the free electrons, causing them to move in the direction of the electric field. The resulting current flow can be transformed into different forms depending on the nature of the device.
Heating: When current flows through a resistor, it encounters resistance, which causes the resistor to heat up. This is the principle behind electric heaters, toasters, and incandescent light bulbs.
Mechanical Work: Current flowing through an electric motor creates a magnetic field, which interacts with the magnetic field of the motor’s permanent magnets or electromagnets. This interaction generates a mechanical force, causing the motor to rotate. Thus, electrical energy is converted into mechanical energy; including sound.
Light: In an incandescent light bulb, a filament heats up ( a quantum phenomena) due to the current passing through it. This is an example of electrical energy being converted into light energy; including the chemical energy through light emitting diodes
Today we dwell on how conductors are specified and installed in building premise wiring systems primarily; with some attention to paths designed to carry current flowing through unwanted paths (ground faults, phase imbalance, etc). In the time we have we will review the present state of the best practice literature developed by the organizations listed below:
Other organizations such as the National Electrical Manufacturers Association, ASTM International, Underwriter Laboratories, also set product and installation standards. Data center wiring; fiber-optic and low-voltage control wiring is covered in other colloquia (e.g. Infotech and Security) and coordinated with the IEEE Education & Healthcare Facilities Committee.
Use the login credentials at the upper right of our home page.
New update alert! The 2022 update to the Trademark Assignment Dataset is now available online. Find 1.29 million trademark assignments, involving 2.28 million unique trademark properties issued by the USPTO between March 1952 and January 2023: https://t.co/njrDAbSpwBpic.twitter.com/GkAXrHoQ9T